
OXFORD

PRINCIPLES OF DEVELOPMENT

FIFTH EDITION

Lewis Wolpert, Cheryll Tickle, Alfonso Martinez Arias

Peter Lawrence, Andrew Lumsden, Elizabeth Robertson, Elliot Meyerowitz, Jim Smith

Principles of Development

Principles of Development Fifth Edition

Lewis Wolpert | Cheryll Tickle | Alfonso Martinez Arias

Peter Lawrence

Andrew Lumsden

Elizabeth Robertson

Elliot Meyerowitz

Jim Smith

OXFORD UNIVERSITY PRESS

Great Clarendon Street, Oxford, OX2 6DP, United Kingdom

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries

© Oxford University Press 2015

The moral rights of the authors have been asserted

Second edition 2001 Third edition 2008 Fourth edition 2011

Impression: 1

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the

address above

You must not circulate this work in any other form and you must impose this same condition on any acquirer

Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America

> British Library Cataloguing in Publication Data Data available

> > ISBN 978-0-19-967814-3

Printed in Italy by L.E.G.O. S.p.A.

Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work

QR Code images are used throughout this book. QR Code is a registered trademark of DENSO WAVE INCORPORATED. If your mobile device does not have a QR Code reader try this website for advice http://www.mobile-barcodes.com/qr-code-software

Preface

As we pointed out in the preface to the fourth edition of *Principles of Development*, developmental biology is at the core of all of the biology of multicellular organisms. It deals with the process by which the genes in the fertilized egg control cell behavior in the embryo and so determine the character of the animal or plant. Developmental biology is also fundamental to evolution, as organisms that are better adapted to the environment result from changes in development. The four years since the last edition of this book have seen continuing progress in understanding the cellular and molecular basis of embryonic development, and genomics is having an increasing impact. In this fifth edition, we have included many recent advances. Of particular note is the progress in our understanding of cell differentiation (Chapter 8) and in deciphering the developmental changes that underlie evolution (Chapter 14). Throughout this new edition, we have also tried to reflect the increasing emphasis on the medical applications of developmental biology, for example in clinical genetics and in regenerative medicine (Chapter 8).

Principles of Development is designed for undergraduates and aims to provide students with an understanding of the principles that guide development. We have tried to make these principles as clear as possible and to provide numerous summaries, in both words and pictures. We focus on the systems that best illustrate the principles of development, and do not aim to provide a comprehensive text. We have also tried to avoid going into too much detail, as this can be overwhelming and obscure general principles. The details can be found in the many reviews in the literature, which are periodically updated. It is our belief that while the details are likely to change, the principles will remain, and as we understand the general principles better, we should be able to make the book shorter!

We have assumed that students have some familiarity with basic cell and molecular biology and genetics, but all key concepts, such as the control of gene activity, are explained in the text. There is also an extensive glossary, which means that the book is self-contained. The illustrations are a special feature and have been carefully designed and chosen to illuminate both experiments and mechanisms. Many new diagrams and photographs are included throughout the book, together with information about their sources. In providing further reading, our prime concern has been to guide the student to particularly helpful papers and reviews rather than to give credit to all the scientists who have made major contributions: to those whom we have neglected, we apologize. As in previous editions, we have concentrated our attention on vertebrates and *Drosophila*, but include other organisms, such as the nematode and the sea urchin, when they best illustrate a concept. As in the previous edition, we have started the book by considering the process of pattern formation in laying down the body plan in *Drosophila* (Chapter 2). This is because of the central role that *Drosophila* has played, and still plays, in understanding developmental mechanisms.

Chapter 3 describes the embryology and genetics of our vertebrate model organisms, together with some of the main methods used to study them. An outline of human embryonic development is included in this edition, because comparing this, where possible, with embryonic development in other vertebrates will be important for medical applications. The mechanisms involved in pattern formation in the early development of our vertebrate model organisms are then considered in the two subsequent chapters (Chapters 4 and 5). These have been reorganized so that the process of laying down the early body plan is first described in its entirety in *Xenopus* (Chapter 4), the vertebrate in which the general principles were discovered. This is followed by comparisons with the process in zebrafish (Chapter 4) and in chick and mouse (Chapter 5). Chapter 5 also considers how the body plan is completed, which mainly rests on studies in chick and mouse embryos. Chapter 6 now focuses on pattern formation in two invertebrate model organisms, the nematode and the sea urchin. Chapter 7 deals with plant development, which is often neglected in general textbooks of developmental biology, and which is important in its own right. Chapters 8 and 9 focus on the fundamental processes of differentiation and morphogenesis and have been extensively revised, with particular reference to stem cells in Chapter 8. Chapter 10 deals with germ cells and fertilization. Organogenesis (Chapter 11) and the development of the nervous system (Chapter 12) are huge topics, so we have had to be very selective in our coverage, but have included new boxes highlighting examples of medical relevance. In this edition, growth and regeneration are considered together in the same chapter (Chapter 13), which has been reorganized, and the last chapter (Chapter 14) deals with development in relation to evolution.

For this new edition, Alfonso Martinez Arias has joined Cheryll Tickle and Lewis Wolpert as a main co-author, and Andrew Lumsden has also become an author. Each chapter has also been reviewed by a number of experts (see page xxii), to whom we give thanks. The authors made the initial revisions, which were then deciphered, edited, and incorporated by our editor, Eleanor Lawrence. Her involvement has been crucial in the preparation of this edition and her expertise and influence pervades the book. Eleanor's input has also been invaluable in ensuring that the information in the book is readily accessible to students. The new illustrations were brilliantly drawn or adapted by Matthew McClements, who created the illustrations for the first edition.

We are indebted to Alice Roberts and Jonathan Crowe at Oxford University Press for their help and patience throughout the preparation of this new edition.

L. W.

London September 2014

С. Т.

Bath September 2014

A. M. A.

Cambridge September 2014

About the Online Resource Centre

www.oxfordtextbooks.co.uk/orc/wolpert5e/

Principles of Development is accompanied by a range of online materials for adopters of the book and their students.

For registered adopters:

Electronic artwork

Figures from the book are available to download, for use in lecture slides.

Journal clubs

Journal clubs consist of discussion questions focused around primary literature articles that relate to topics featured in the book. Use these as an additional learning tool to help your students become more adept at assimilating knowledge from the research literature.

Test bank

A test bank of questions is available for you to use when assessing your students.

For students:

Flashcard glossary

Flashcards, which can be downloaded to mobile devices, can help you test your recall of key terminology.

Multiple-choice questions

Use the extensive bank of multiple-choice questions to check your understanding of concepts introduced in the book, and get instant feedback on your progress.

Answer guidance

The authors have written answer guidance to the long-answer questions found at the end of each chapter, so you can check that you have considered all the appropriate points when responding to each question.

Web links and web activities

Links to websites, with notes to explain how each site relates to concepts featured in the book, are provided to help you explore topics in the book in more detail. Complete the associated activities to get to grips with the material in a hands-on way. *In silico* practicals have also been developed to accompany the book, and include questions to help you think more deeply about the material you have learned.

Movies from real research

Scan the QR code images in the text to access movies showing key developmental processes occurring in real embryos to help you visualize developmental biology in three dimensions.

Signaling pathway animations

Custom-made animations of key signaling pathways, linked to the text via QR code images, break down these complex processes into stages, making them easier to understand and remember.

Online extracts

Further material on the development of ascidians can be found online, in addition to extra topics such as kidney organogenesis and reaction-diffusion mechanisms. QR code images at the relevant points in the text direct you to this extra material.

About the authors

Lewis Wolpert is Emeritus Professor of Biology as Applied to Medicine, in the Department of Anatomy and Developmental Biology, University College London, London, UK. He is the author of *The Triumph of the Embryo, A Passion for Science, The Unnatural Nature of Science,* and *Six Impossible Things Before Breakfast.*

Cheryll Tickle is Emeritus Professor in the Department of Biology and Biochemistry, University of Bath, Bath, UK.

Alfonso Martinez Arias is Professor of Developmental Mechanics at the University of Cambridge, UK.

Peter Lawrence is in the Department of Zoology, University of Cambridge, UK, and Emeritus member of the Medical Research Council Laboratory of Molecular Biology, Cambridge, UK. He is the author of *The Making of a Fly*.

Andrew Lumsden is Professor of Developmental Neurobiology and Emeritus Director of the MRC Centre for Developmental Neurobiology at King's College London, UK. He is the co-author of *The Developing Brain*.

Elizabeth Robertson is a Wellcome Trust Principal Fellow and Professor at the Sir William Dunn School of Pathology at the University of Oxford, Oxford, UK.

Elliot Meyerowitz is the George W. Beadle Professor of Biology and Chair of the Division of Biology at the California Institute of Technology, Pasadena, CA, USA.

Jim Smith is Director of the Medical Research Council National Institute for Medical Research, London, UK.

Eleanor Lawrence is a freelance science writer and editor.

Matthew McClements is an illustrator who specializes in design for scientific, technical, and medical communication.

Summary of contents

	List of boxes	xxii
	Reviewer acknowledgements	xxiv
Chapter 1	History and basic concepts	1
	Development of the <i>Drosophila</i> body plan	37
Chapter 3	Vertebrate development I: life cycles and experimental techniques	103
Chapter 4	Vertebrate development II: Xenopus and zebrafish	144
Chapter 5	Vertebrate development III: Chick and mouse—completing the body plan	185
Chapter 6	Development of nematodes and sea urchins	235
Chapter 7	Plant development	272
Chapter 8	Cell differentiation and stem cells	309
Chapter 9	Morphogenesis: change in form in the early embryo	361
Chapter 10	Germ cells, fertilization, and sex	409
Chapter 11	Organogenesis	446
Chapter 12	Development of the nervous system	520
Chapter 13	Growth, post-embryonic development and regeneration	569
Chapter 14	Evolution and development	623
	Glossary	659
	Index	681

Contents

List of boxes	xxii	1.15 Patterning can involve t of positional information
Reviewer acknowledgments	xxiv	 Box 1F When developmen
Chapter 1 History and basic concepts	1	1.16 Lateral inhibition can ge
The origins of developmental biology	3	1.17 Localization of cytoplas
1.1 Aristotle first defined the problem of		cell division can make daught
epigenesis versus preformation	З	1.18 The embryo contains a
Box 1A Basic stages of Xenopus laevis development	4	a descriptive program
1.2 Cell theory changed how people thought about embryonic development and heredity	4	1.19 The reliability of develo by various means
1.3 Two main types of development were originally proposed	6	1.20 The complexity of embr
Box 1B The mitotic cell cycle	7	complexity of cells themselve
1.4 The discovery of induction showed that one group of		1.21 Development is a centra
cells could determine the development of neighboring cells	8	Summary
1.5 Developmental biology emerged from the coming		Summary to Chapter 1
together of genetics and embryology	8	Chapter 2 Developmen
1.6 Development is studied mainly through selected	0	body plan
model organisms	9	Drosophila life cycle and o
1.7 The first developmental genes were identified as spontaneous mutations	11	2.1 The early Drosophila emb
Summary	13	2.2 Cellularization is followe
A conceptual tool kit	13	and segmentation
1.8 Development involves the emergence of pattern,		2.3 After hatching, the Droso
change in form, cell differentiation, and growth	14	through several larval stages, metamorphosis to become an
Box 1C Germ layers	15	2.4 Many developmental gen
1.9 Cell behavior provides the link between gene action and		through induced large-scale g
developmental processes	17	Box 2A Mutagenesis and g
1.10 Genes control cell behavior by specifying		for identifying developmental
which proteins are made	17	Summary
1.11 The expression of developmental genes is	10	Setting up the body axes
under tight control	19	2.5 The body axes are set u
 Box 1D Visualizing gene expression in embryos 1.12 Development is progressive and the fotos 	20	embryo is still a syncytium
1.12 Development is progressive and the fates of cells become determined at different times	22	2.6 Maternal factors set up the early stage of <i>Drosophila</i>
1.13 Inductive interactions make cells different		2.7 Three classes of matern
from each other	24	antero-posterior axis
Box 1E Signal transduction and intracellular signaling pathways	26	2.8 Bicoid protein provides ar gradient of a morphogen
1.14 The response to inductive signals depends on the state of the cell	26	2.9 The posterior pattern is c of Nanos and Caudal proteins

i	1.15 Patterning can involve the interpretation	
J	of positional information	27
	Box 1F When development goes awry	28
L	1.16 Lateral inhibition can generate spacing patterns	30
}	1.17 Localization of cytoplasmic determinants and asymmetric cell division can make daughter cells different from each other	30
3 1	1.18 The embryo contains a generative rather than a descriptive program	31
ļ	1.19 The reliability of development is achieved by various means	32
5	1.20 The complexity of embryonic development is due to the complexity of cells themselves	32
	1.21 Development is a central element in evolution	33
3	Summary	34
	Summary to Chapter 1	34
3	Chapter 2 Development of the Drosophila	
_	body plan	37
)	Drosophila life cycle and overall development	38
	2.1 The early <i>Drosophila</i> embryo is a multinucleate syncytium	38
3	2.2 Cellularization is followed by gastrulation and segmentation	40
3	2.3 After hatching, the <i>Drosophila</i> larva develops through several larval stages, pupates, and then undergoes metamorphosis to become an adult	41
5	2.4 Many developmental genes were identified in <i>Drosophila</i> through induced large-scale genetic screening	41
7	Box 2A Mutagenesis and genetic screening strategy for identifying developmental mutants in <i>Drosophila</i>	43
7	Summary	44
	Setting up the body axes	44
)	2.5 The body axes are set up while the <i>Drosophila</i> embryo is still a syncytium	44
2	2.6 Maternal factors set up the body axes and direct the early stage of <i>Drosophila</i> development	46
ł	2.7 Three classes of maternal genes specify the antero-posterior axis	46
5	2.8 Bicoid protein provides an antero-posterior gradient of a morphogen	46
	2.9 The posterior pattern is controlled by the gradients	

49

2.10 The anterior and posterior extremities of the embryo are specified by activation of a cell-surface receptor	50
2.11 The dorso-ventral polarity of the embryo is specified by localization of maternal proteins in the egg vitelline envelope	51
2.12 Positional information along the dorso-ventral axis	
is provided by the Dorsal protein	52
Summary	53
Box 2B The Toll signaling pathway: a multifunctional pathway	54
Localization of maternal determinants during oogenesis	54
2.13 The antero-posterior axis of the <i>Drosophila</i> egg is specified by signals from the preceding egg chamber and	
by interactions of the oocyte with follicle cells	55
Box 2C The JAK-STAT signaling pathway	57
2.14 Localization of maternal mRNAs to either end of the egg depends on the reorganization of the oocyte cytoskeleton	58
2.15 The dorso-ventral axis of the egg is specified by	
movement of the oocyte nucleus followed by signaling	
between oocyte and follicle cells	60
Summary	60
Patterning the early embryo	61
2.16 The expression of zygotic genes along the dorso-ventral axis is controlled by Dorsal protein	61
2.17 The Decapentaplegic protein acts as a morphogen to pattern the dorsal region	64
2.18 The antero-posterior axis is divided up into broad regions by gap-gene expression	66
2.19 The bicoid protein provides a positional signal for the anterior expression of zygotic <i>hunchback</i>	66
2.20 The gradient in Hunchback protein activates and represses other gap genes	68
Box 2D P-element-mediated transformation	69
Box 2E Targeted gene expression and misexpression screening	70
Summary	71
Activation of the pair-rule genes and the	
establishment of parasegments	71
2.21 Parasegments are delimited by expression of pair-rule genes in a periodic pattern	72
2.22 Gap-gene activity positions stripes of pair-rule gene expression	72
2.23 Some insects use different mechanisms for patterning the body plan	75
Summary	77
Segmentation genes and segment patterning	77
2.24 Expression of the <i>engrailed</i> gene defines the	
boundary of a parasegment which is also a boundary of cell-lineage restriction	77
cell-lineage restriction 2.25 Segmentation genes stabilize parasegment boundaries	77 79
Sequentation genes stanling halasegment houndalles	15

2.26 Signals generated at the parasegment boundary	
delimit and pattern the future segments	79
Box 2F The Hedgehog signaling pathway	82
2.27 Compartment boundaries persist into the adult fly	83
Box 2G Mutants in denticle pattern provided clues to the logic of segment patterning	84
Box 2H Genetic mosaics and mitotic recombination	86
	80
2.28 Insect epidermal cells become individually polarized in an antero-posterior direction in the plane of the epithelium	87
Box 21 Planar cell polarity in Drosophila	88
Summary	89
Specification of segment identity	90
2.29 Segment identity in <i>Drosophila</i> is specified by Hox genes	91
2.30 Homeotic selector genes of the bithorax complex are responsible for diversification of the posterior segments	92
2.31 The Antennapedia complex controls specification of anterior regions	93
2.32 The order of Hox gene expression corresponds to	
the order of genes along the chromosome	93
2.33 The Drosophila head region is specified by genes	
other than the Hox genes	94
Summary	94
Summary to Chapter 2	95
Chapter 3 Vertebrate development I: life	107
cycles and experimental techniques	103
Vertebrate life cycles and outlines of development	104
3.1 The frog <i>Xenopus laevis</i> is the model amphibian for studying development of the body plan	107
3.2 The zebrafish embryo develops around a large	

studying development of the body plan	107
3.2 The zebrafish embryo develops around a large mass of yolk	111
3.3 Birds and mammals resemble each other and differ from <i>Xenopus</i> in some important features of early development	113
3.4 The early chicken embryo develops as a flat disc of cells overlying a massive yolk	114
3.5 The mouse egg has no yolk and early development involves the allocation of cells to form the placenta and	110
extra-embryonic membranes	119
3.6 The early development of a human embryo is similar to that of the mouse	123
Experimental approaches to studying	
vertebrate development	125
Box 3A Preimplantation genetic diagnosis	126
Box 3B Gene-expression profiling by DNA microarrays and RNA seq	128
3.7 Fate mapping and lineage tracing reveal what parts of the	

body cells in the early embryo give rise to which adult structures 129

3.8 Not all techniques are equally applicable to all vertebrates	131
3.9 Developmental genes can be identified by spontaneous mutation and by large-scale mutagenesis screens	132
Box 3C Large-scale mutagenesis screens for recessive mutations in zebrafish	134
3.10 Transgenic techniques enable animals to be produced with mutations in specific genes	135
Box 3D The Cre/loxP system: a strategy for making gene knock-outs in mice	138
3.11 Gene function can also be tested by transient transgenesis and gene silencing	139
3.12 Gene regulatory networks in embryonic development can be revealed by chromatin immunoprecipitation	
techniques	139
Summary to Chapter 3	140

Chapter 4 Vertebrate development II: Xenopus	
and zebrafish	144
Setting up the body axes	145
4.1 The animal-vegetal axis is maternally determined	
in Xenopus	145
Box 4A Intercellular protein signals in vertebrate development	147
Box 4B The Wnt/β-catenin signaling pathway	148
4.2 Local activation of Wnt/ β -catenin signaling specifies the future dorsal side of the embryo	149
4.3 Signaling centers develop on the dorsal side	
of the blastula	151
Summary	152
The origin and specification of the germ layers	152
4.4 The fate map of the <i>Xenopus</i> blastula makes clear the function of gastrulation	153
4.5 Cells of the early <i>Xenopus</i> embryo do not yet have their fates determined and regulation is possible	154
4.6 Endoderm and ectoderm are specified by maternal factors, whereas mesoderm is induced from ectoderm by signals from the vegetal region	154
Box 4C Signaling by members of the TGF-β family of growth factors	157
4.7 Mesoderm induction occurs during a limited period in the blastula stage	157
4.8 Zygotic gene expression is turned on at the mid-blastula transition	158
4.9 Mesoderm-inducing and patterning signals are produced by the vegetal region, the organizer, and the ventral mesoderm	159
4.10 Members of the TGF- β family have been identified as mesoderm inducers	160

Box 4D Investigating receptor function using	
dominant-negative mutations	161
4.11 The zygotic expression of mesoderm-inducing and patterning signals is activated by the combined actions of maternal VegT and Wnt signaling	161
4.12 Threshold responses to gradients of signaling proteins	
are likely to pattern the mesoderm	162
Summary	164
The Spemann organizer and neural induction	164
Box 4E The FGF signaling pathway	165
4.13 Signals from the organizer pattern the	
mesoderm dorso-ventrally by antagonizing the effects	
of ventral signals	166
4.14 The antero-posterior axis of the embryo emerges	4 6 7
during gastrulation	167
4.15 The neural plate is induced in the ectoderm	169
4.16 The nervous system is patterned along the	
antero-posterior axis by signals from the mesoderm	172
4.17 The final body plan emerges by the end of gastrulation and neurulation	173
Summary	173
•	
Development of the body plan in zebrafish	174
4.18 The body axes in zebrafish are established by maternal determinants	175
	1/3
4.19 The germ layers are specified in the zebrafish blastoderm by similar signals to those in <i>Xenopus</i>	175
4.20 The shield in zebrafish is the embryonic organizer	175
like the Spemann organizer in <i>Xenopus</i>	177
Summary to Chapter 4	178
Chapter 5 Vertebrate development III: Chick	
enapter of vertebrate development in enter	

Chapter 5 Vertebrate development III: Chick	
and mouse-completing the body plan	185
Development of the body plan in chick and mouse	186
5.1 The antero-posterior polarity of the chick blastoderm is related to the primitive streak	186
5.2 Early stages in mouse development establish separate cell lineages for the embryo and the extra-embryonic structures	188
5.3 Movement of the anterior visceral endoderm indicates the definitive antero-posterior axis in the mouse embryo	192
5.4 The fate maps of vertebrate embryos are variations on a basic plan	193
Box 5A Fine-tuning Nodal signaling	194
5.5 Mesoderm induction and patterning in the chick and mouse occurs during primitive-streak formation	196
5.6 The node that develops at the anterior end of the streak in chick and mouse embryos is equivalent to the Spemann	
organizer in <i>Xenopus</i>	198

5.7 Neural induction in chick and mouse is initiated by	
FGF signaling with inhibition of BMP signaling being required	200
in a later step	
Box 5B Chromatin-remodeling complexes	202
5.8 Axial structures in chick and mouse are generated from self-renewing cell populations	203
Summary	205
 Box 5C Retinoic acid: a small-molecule intercellular signal 	205
Somite formation and antero-posterior patterning	207
5.9 Somites are formed in a well-defined order along the	207
antero-posterior axis	208
Box 5D The Notch signaling pathway	212
5.10 Identity of somites along the antero-posterior axis	
is specified by Hox gene expression	213
Box 5E The Hox genes	215
5.11 Deletion or overexpression of Hox genes causes	
changes in axial patterning	218
5.12 Hox gene expression is activated in an anterior to	
posterior pattern	219
5.13 The fate of somite cells is determined by signals	000
from the adjacent tissues	220
Summary	222
The origin and patterning of neural crest	223
5.14 Neural crest cells arise from the borders of the neural plate and migrate to give rise to a wide range of different	
cell types	223
5.15 Neural crest cells migrate from the hindbrain to	
populate the branchial arches	224
Summary	225
Determination of left-right asymmetry	226
5.16 The bilateral symmetry of the early embryo is broken	
to produce left-right asymmetry of internal organs	226
5.17 Left-right symmetry breaking may be initiated within	סכב
cells of the early embryo	228
Summary	229
Summary to Chapter 5	229
Chapter 6 Development of nematodes and	
sea urchins	235
Nematodes	236
Box 6A Apoptotic pathways in nematodes, <i>Drosophila</i>	
and mammals	238
6.1 The cell lineage of <i>Caenorhabditis elegans</i> is	220
largely invariant	239
6.2 The antero-posterior axis in <i>Caenorhabditis elegans</i> is determined by asymmetric cell division	239
 Box 6B Gene silencing by antisense RNA and RNA interference 	

6.3 The dorso-ventral axis in <i>Caenorhabditis elegans</i> is determined by cell-cell interactions	242
6.4 Both asymmetric divisions and cell-cell interactions	242
specify cell fate in the early nematode embryo	244
6.5 Cell differentiation in the nematode is closely linked to the pattern of cell division	246
6.6 Hox genes specify positional identity along the antero-posterior axis in <i>Caenorhabditis elegans</i>	247
6.7 The timing of events in nematode development is under genetic control that involves microRNAs	248
Box 6C Gene silencing by microRNAs	250
6.8 Vulval development is initiated by the induction of a small number of cells by short-range signals from a single	250
inducing cell	250
Summary	253
Echinoderms	254
6.9 The sea-urchin embryo develops into a free-swimming larva6.10 The sea-urchin egg is polarized along the	254
animal-vegetal axis	255
6.11 The sea-urchin fate map is finely specified, yet considerable regulation is possible	257
6.12 The vegetal region of the sea-urchin embryo acts as an organizer	258
6.13 The sea-urchin vegetal region is demarcated by the nuclear accumulation of β -catenin	259
6.14 The animal-vegetal axis and the oral-aboral axis can be considered to correspond to the antero-posterior and dorso-ventral axes of other deuterostomes	260
	200
6.15 The pluteus skeleton develops from the primary mesenchyme	261
6.16 The oral-aboral axis in sea urchins is related to the	
plane of the first cleavage	263
6.17 The oral ectoderm acts as an organizing region for the oral-aboral axis	264
 Box 6D The gene regulatory network for sea-urchin 	204
endomesoderm specification	265
Summary	266
Summary to Chapter 6	266
Chapter 7 Plant development	272
7.1 The model plant Arabidopsis thaliana has a short life	
cycle and a small diploid genome	274
Embryonic development	275
7.2 Plant embryos develop through several distinct stages	275
Box 7A Angiosperm embryogenesis	276
7.3 Gradients of the signal molecule auxin establish the embryonic apical-basal axis	278

74. Plant comptie colle can give rise to embruos	
7.4 Plant somatic cells can give rise to embryos and seedlings	280
Box 7B Transgenic plants	281
7.5 Cell enlargement is a major process in plant growth	
and morphogenesis	281
Summary	282
Meristems	283
7.6 A meristem contains a small, central zone of self-renewing stem cells	284
7.7 The size of the stem-cell area in the meristem is kept constant by a feedback loop to the organizing center	284
7.8 The fate of cells from different meristem layers can be changed by changing their position	285
7.9 A fate map for the embryonic shoot meristem can be deduced using clonal analysis	287
7.10 Meristem development is dependent on signals from other parts of the plant	288
7.11 Gene activity patterns the proximo-distal and adaxial-abaxial axes of leaves developing from the	
shoot meristem	289
7.12 The regular arrangement of leaves on a stem is generated by regulated auxin transport	290
7.13 Root tissues are produced from <i>Arabidopsis</i> root apical meristems by a highly stereotyped pattern of cell divisions	292
7.14 Root hairs are specified by a combination of	
positional information and lateral inhibition	294
Summary	294
Flower development and control of flowering	295
7.15 Homeotic genes control organ identity in the flower	296
Box 7C The basic model for the patterning of the Arabidopsis flower	298
7.16 The Antirrhinum flower is patterned dorso-ventrally as well as radially	299
7.17 The internal meristem layer can specify floral	
meristem patterning	300
7.18 The transition of a shoot meristem to a floral meristem is under environmental and genetic control	300
7.19 Most flowering plants are hermaphrodites, but	
some produce unisexual flowers	302
Summary	303
Summary to Chapter 7	304
Chapter 8 Cell differentiation and stem cells	309
The control of gene expression	312
8.1 Control of transcription involves both general and tissue-specific transcriptional regulators	313

tissue-specific transcriptional regulators

280	structural modifications to DNA and histone proteins that	
281	alter chromatin structure	316
	Box 8A Epigenetic control of gene expression by chromatin	
281	modification	317
282	8.3 Patterns of gene activity can be inherited by persistence	
283	of gene-regulatory proteins or by maintenance of chromatin	
200	modifications	318
284	8.4 Changes in patterns of gene activity during	
	differentiation can be triggered by extracellular signals	319
284	Summary	321
	Models of cell differentiation and stem cells	322
285	8.5 Muscle differentiation is determined by the MyoD	
	family of transcription factors	322
287	8.6 The differentiation of muscle cells involves withdrawal	
	from the cell cycle, but is reversible	324
288	8.7 All blood cells are derived from multipotent stem cells	325
	8.8 Intrinsic and extrinsic changes control differentiation	
	of the hematopoietic lineages	328
289	8.9 Developmentally regulated globin gene expression	
	is controlled by regulatory sequences far distant from	220
290	the coding regions	330
	8.10 The epidermis of adult mammalian skin is continually being replaced by derivatives of stem cells	332
292		222
LJL	8.11 Stem cells use different modes of division to maintain tissues	334
294	8.12 The lining of the gut is another epithelial tissue	551
294	that requires continuous renewal	336
295	8.13 Skeletal muscle and neural cells can be renewed	
296	from stem cells in adults	338
250	8.14 Embryonic stem cells can proliferate and differentiate	
298	into many cell types in culture and contribute to normal	
	development <i>in vivo</i>	339
299	Box 8B The derivation and culture of mouse embryonic	
	stem cells (ES cells)	341
300	Summary	342
	The plasticity of the differentiated state	343
300	8.15 Nuclei of differentiated cells can support development	344
	8.16 Patterns of gene activity in differentiated cells can	
302	be changed by cell fusion	346
303	8.17 The differentiated state of a cell can change by	
304	transdifferentiation	346
	8.18 Stem cells could be a key to regenerative medicine	348
309	Box 8C Tissue engineering using stem cells	349
312	Box 8D Induced pluripotent stem cells (iPS cells)	350
	8.19 Various approaches can be used to generate	
313	differentiated cells for cell-replacement therapies	352

8.2 Gene expression is also controlled by chemical and structural modifications to DNA and histone proteins that

Summary	355
Summary to Chapter 8	355
Chapter 9 Morphogenesis: change in form in	361
the early embryo Cell adhesion	363
9.1 Sorting out of dissociated cells demonstrates differences	202
in cell adhesiveness in different tissues	363
Box 9A Cell-adhesion molecules and cell junctions	365
9.2 Cadherins can provide adhesive specificity	366
9.3 Transitions of tissues from an epithelial to a mesenchymal state, and vice versa, involve changes in adhesive junctions	367
Box 9B The cytoskeleton, cell-shape change and	
cell movement	368
Summary	369
Cleavage and formation of the blastula	369
9.4 The orientation of the mitotic spindle determines the plane of cleavage at cell division	370
9.5 The positioning of the spindle within the cell also determines whether daughter cells will be the same or	
different sizes	372
9.6 Cells become polarized in the sea-urchin blastula and the mouse morula	373
9.7 Fluid accumulation as a result of tight-junction formation and ion transport forms the blastocoel of the mammalian blastocyst	375
Summary	376
Gastrulation movements	370
9.8 Gastrulation in the sea urchin involves an epithelial-to- mesenchymal transition, cell migration, and invagination of	111
the blastula wall	377
9.9 Mesoderm invagination in <i>Drosophila</i> is due to changes in cell shape controlled by genes that pattern the	
dorso-ventral axis	380
9.10 Germ-band extension in <i>Drosophila</i> involves myosin-dependent remodeling of cell junctions and cell	
intercalation	382
9.11 Gastrulation in amphibians and fish involves	
involution, epiboly, and convergent extension	383
Box 9C Convergent extension	385
9.12 <i>Xenopus</i> notochord development illustrates the dependence of medio-lateral cell polarity on a pre-existing	
antero-posterior polarity	387
9.13 Gastrulation in chick and mouse embryos involves the	
delamination of cells from the epiblast and their ingression through the primitive streak	389

Summary	391
Neural tube formation	392
9.14 Neural tube formation is driven by changes in cell shape and convergent extension	393
Box 9D Eph receptors and their ephrin ligands	395
Box 9E Neural tube defects	396
Summary	396
Cell migration	397
9.15 Embryonic neural crest gives rise to a wide range of different cell types	397
9.16 Neural crest migration is controlled by environmental cues	397
9.17 The formation of the lateral-line primordium in fishes is an example of collective cell migration	399
9.18 Dorsal closure in <i>Drosophila</i> and ventral closure in <i>Caenorhabditis elegans</i> are brought about by the action	
of filopodia	400
Summary	401
Directed dilation	402
9.19 Later extension and stiffening of the notochord occurs by directed dilation	402
9.20 Circumferential contraction of hypodermal cells	400
elongates the nematode embryo	403
Summary	403
Summary to Chapter 9	404
Chapter 10 Germ cells, fertilization, and sex	
	409
The development of germ cells	409 410
The development of germ cells 10.1 Germ-cell fate is specified in some embryos by a distinct germplasm in the egg	
10.1 Germ-cell fate is specified in some embryos by a distinct germplasm in the egg10.2 In mammals germ cells are induced by cell-cell	410 411
 10.1 Germ-cell fate is specified in some embryos by a distinct germplasm in the egg 10.2 In mammals germ cells are induced by cell-cell interactions during development 	410 411 413
 10.1 Germ-cell fate is specified in some embryos by a distinct germplasm in the egg 10.2 In mammals germ cells are induced by cell-cell interactions during development 10.3 Germ cells migrate from their site of origin to the gonad 	410 411
 10.1 Germ-cell fate is specified in some embryos by a distinct germplasm in the egg 10.2 In mammals germ cells are induced by cell-cell interactions during development 10.3 Germ cells migrate from their site of origin to the gonad 10.4 Germ cells are guided to their final destination by 	410 411 413 414
 10.1 Germ-cell fate is specified in some embryos by a distinct germplasm in the egg 10.2 In mammals germ cells are induced by cell-cell interactions during development 10.3 Germ cells migrate from their site of origin to the gonad 10.4 Germ cells are guided to their final destination by chemical signals 	410 411 413
 10.1 Germ-cell fate is specified in some embryos by a distinct germplasm in the egg 10.2 In mammals germ cells are induced by cell-cell interactions during development 10.3 Germ cells migrate from their site of origin to the gonad 10.4 Germ cells are guided to their final destination by chemical signals 10.5 Germ-cell differentiation involves a halving of 	410 411 413 414
 10.1 Germ-cell fate is specified in some embryos by a distinct germplasm in the egg 10.2 In mammals germ cells are induced by cell-cell interactions during development 10.3 Germ cells migrate from their site of origin to the gonad 10.4 Germ cells are guided to their final destination by chemical signals 	 410 411 413 414 415
 10.1 Germ-cell fate is specified in some embryos by a distinct germplasm in the egg 10.2 In mammals germ cells are induced by cell-cell interactions during development 10.3 Germ cells migrate from their site of origin to the gonad 10.4 Germ cells are guided to their final destination by chemical signals 10.5 Germ-cell differentiation involves a halving of chromosome number by meiosis 	 410 411 413 414 415 416
 10.1 Germ-cell fate is specified in some embryos by a distinct germplasm in the egg 10.2 In mammals germ cells are induced by cell-cell interactions during development 10.3 Germ cells migrate from their site of origin to the gonad 10.4 Germ cells are guided to their final destination by chemical signals 10.5 Germ-cell differentiation involves a halving of chromosome number by meiosis Box 10A Polar bodies 10.6 Oocyte development can involve gene amplification 	 410 411 413 414 415 416 417
 10.1 Germ-cell fate is specified in some embryos by a distinct germplasm in the egg 10.2 In mammals germ cells are induced by cell-cell interactions during development 10.3 Germ cells migrate from their site of origin to the gonad 10.4 Germ cells are guided to their final destination by chemical signals 10.5 Germ-cell differentiation involves a halving of chromosome number by meiosis Box 10A Polar bodies 10.6 Oocyte development can involve gene amplification and contributions from other cells 	 410 411 413 414 415 416 417
 10.1 Germ-cell fate is specified in some embryos by a distinct germplasm in the egg 10.2 In mammals germ cells are induced by cell-cell interactions during development 10.3 Germ cells migrate from their site of origin to the gonad 10.4 Germ cells are guided to their final destination by chemical signals 10.5 Germ-cell differentiation involves a halving of chromosome number by meiosis Box 10A Polar bodies 10.6 Oocyte development can involve gene amplification and contributions from other cells 10.7 Factors in the cytoplasm maintain the totipotency 	 410 411 413 414 415 416 417 419
 10.1 Germ-cell fate is specified in some embryos by a distinct germplasm in the egg 10.2 In mammals germ cells are induced by cell-cell interactions during development 10.3 Germ cells migrate from their site of origin to the gonad 10.4 Germ cells are guided to their final destination by chemical signals 10.5 Germ-cell differentiation involves a halving of chromosome number by meiosis Box 10A Polar bodies 10.6 Oocyte development can involve gene amplification and contributions from other cells 10.7 Factors in the cytoplasm maintain the totipotency of the egg 	 410 411 413 414 415 416 417 419
 10.1 Germ-cell fate is specified in some embryos by a distinct germplasm in the egg 10.2 In mammals germ cells are induced by cell-cell interactions during development 10.3 Germ cells migrate from their site of origin to the gonad 10.4 Germ cells are guided to their final destination by chemical signals 10.5 Germ-cell differentiation involves a halving of chromosome number by meiosis Box 10A Polar bodies 10.6 Oocyte development can involve gene amplification and contributions from other cells 10.7 Factors in the cytoplasm maintain the totipotency of the egg 10.8 In mammals some genes controlling embryonic 	 410 411 413 414 415 416 417 419 420

10.9 Fertilization involves cell-surface interactions between egg and sperm	424
10.10 Changes in the egg plasma membrane and	
enveloping layers at fertilization block polyspermy	426
10.11 Sperm-egg fusion causes a calcium wave that	
results in egg activation	427
Summary	429
Determination of the sexual phenotype	430
10.12 The primary sex-determining gene in mammals	
is on the Y chromosome	430
10.13 Mammalian sexual phenotype is regulated	
by gonadal hormones	431
10.14 The primary sex-determining signal in <i>Drosophila</i>	
is the number of X chromosomes and is cell autonomous	433
10.15 Somatic sexual development in <i>Caenorhabditis</i>	
is determined by the number of X chromosomes	435
10.16 Determination of germ-cell sex depends on	
both genetic constitution and intercellular signals	436
10.17 Various strategies are used for dosage	420
compensation of X-linked genes	438
Summary	440
Summary to Chapter 10	441
Chapter 11 Organogenesis	446
The vertebrate limb	447
11.1 The vertebrate limb develops from a limb bud	447
11.2 Genes expressed in the lateral plate mesoderm are involved in specifying the position and type of limb	449
11.3 The apical ectodermal ridge is required for limb	
outgrowth and the formation of structures along the	
proximo-distal axis of the limb	451
11.4 Outgrowth of the limb bud involves oriented cell behavior	452
$\textbf{11.5} \hspace{0.1 cm} \textbf{Patterning of the limb bud involves positional information}$	454
11.6 How position along the proximo-distal axis of the	
limb bud is specified is still a matter of debate	454
11.7 The polarizing region specifies position along the limb's antero-posterior axis	456
Box 11A Teratogens and the consequences of damage	
to the developing embryo	458
Box 11B Positional information and morphogen gradients	460
11.8 Sonic hedgehog is the polarizing region morphogen	461
11.9 How digit identity is encoded is not yet known	462
Box 11C Too many fingers: mutations that affect	
antero-posterior patterning can cause polydactyly	463
11.10 The dorso-ventral axis of the limb is controlled by the	10.
11.10 The dorso-ventral axis of the limb is controlled by the ectoderm	464

4	11.11 Development of the limb is integrated by interactions between signaling centers	465
	Box 11D Sonic hedgehog signaling and the primary cilium	466
6	11.12 Different interpretations of the same positional signals give different limbs	467
.7 .9	11.13 Hox genes have multiple inputs into the patterning of the limb	468
0	11.14 Self-organization may be involved in the development of the limb bud	471
0	Box 11E Reaction-diffusion mechanisms	472
	11.15 Limb muscle is patterned by the connective tissue	473
1	11.16 The initial development of cartilage, muscles, and tendons is autonomous	473
3	11.17 Joint formation involves secreted signals and mechanical stimuli	474
5	11.18 Separation of the digits is the result of	
	programmed cell death	475
6	Summary	476
	Insect wings and legs	476
8 0	11.19 The adult wing emerges at metamorphosis after folding and evagination of the wing imaginal disc	477
-1	11.20 A signaling center at the boundary between anterior and posterior compartments patterns the <i>Drosophila</i> wing along the antero-posterior axis	478
.7 .7	11.21 A signaling center at the boundary between dorsal and ventral compartments patterns the <i>Drosophila</i> wing along the dorso-ventral axis	481
9	11.22 Vestigial is a key regulator of wing development that acts to specify wing identity and control wing growth	481
1	11.23 How the proximo-distal axis of the <i>Drosophila</i> wing is patterned is not yet clear	483
2	11.24 The leg disc is patterned in a similar manner to the wing disc, except for the proximo-distal axis	483
4	11.25 Butterfly wing markings are organized by additional positional fields	485
6	11.26 Different imaginal discs can have the same positional values	486
	Summary	488
8	Vertebrate and insect eyes	489
0 1	11.27 The vertebrate eye develops mainly from the neural tube and the ectoderm of the head	490
2	11.28 Patterning of the <i>Drosophila</i> eye involves cell-cell interactions	494
З	Summary	497
	Vertebrate lungs and insect tracheal system	498
4	11.29 The vertebrate lung develops by branching of epithelial tubes	499

11.30 The <i>Drosophila</i> tracheal system is a prime example	
of branching morphogenesis	500
Summary	502
Vertebrate blood vessels and heart	502
11.31 The vascular system develops by vasculogenesis	
followed by sprouting angiogenesis	502
11.32 The development of the vertebrate heart involves	504
morphogenesis and patterning of a mesodermal tube Teeth	504
11.33 Tooth development involves epithelial-mesenchymal	507
interactions and a homeobox gene code specifies tooth identity	507
Summary	510
Summary to Chapter 11	510
Chapter 12 Development of the nervous system	520
Specification of cell identity in the nervous system	522
12.1 Initial regionalization of the vertebrate brain involves signals from local organizers	522
12.2 Local signaling centers pattern the brain along the antero-posterior axis	523
12.3 The cerebral cortex is patterned by signals from the anterior neural ridge	524
12.4 The hindbrain is segmented into rhombomeres by boundaries of cell-lineage restriction	525
12.5 Hox genes provide positional information in the developing hindbrain	527
12.6 The pattern of differentiation of cells along the dorso-ventral axis of the spinal cord depends on ventral	
and dorsal signals	528
12.7 Neuronal subtypes in the ventral spinal cord are	
specified by the ventral to dorsal gradient of Shh	530
12.8 Spinal cord motor neurons at different dorso-ventral positions project to different trunk and limb muscles	531
12.9 Antero-posterior pattern in the spinal cord is determined	
in response to secreted signals from the node and adjacent	
mesoderm	532
Summary	533
The formation and migration of neurons	533
12.10 Neurons in <i>Drosophila</i> arise from proneural clusters	533
12.11 The development of neurons in <i>Drosophila</i> involves asymmetric cell divisions and timed changes in gene expression	536
 Box 12A Specification of the sensory organs 	550
of adult Drosophila	537
12.12 The production of vertebrate neurons involves lateral inhibition, as in <i>Drosophila</i>	538

12.13 Neurons are formed in the proliferative zone of the vertebrate neural tube and migrate outwards	539
 Box 12B Timing the birth of cortical neurons 	541
12.14 Many cortical interneurons migrate tangentially	543
Summary	543
Axon navigation	544
L2.15 The growth cone controls the path taken by a	544
growing axon	545
Box 12C The development of the neural circuit for the	
nee-jerk reflex	547
L2.16 Motor neuron axons in the chick limb are guided by	
ephrin-Eph interactions	548
L2.17 Axons crossing the midline are both attracted and	
epelled	549
L2.18 Neurons from the retina make ordered connections with visual centers in the brain	550
Summary	553
Synapse formation and refinement	554
.2.19 Synapse formation involves reciprocal interactions	556
Box 12D Autism: a developmental disorder that involves	0.0
ynapse dysfunction	558
.2.20 Many motor neurons die during normal development	559
2.21 Neuronal cell death and survival involve both	
ntrinsic and extrinsic factors	559
2.22 The map from eye to brain is refined by neural activity	560
Summary	561
Summary to Chapter 12	562
Chapter 13 Growth, post-embryonic development	
and regeneration	569
Growth	570
L3.1 Tissues can grow by cell proliferation, cell enlargement,	
or accretion	571
L3.2 Cell proliferation is controlled by regulating entry into	
he cell cycle	572
L3.3 Cell division in early development can be controlled by an intrinsic developmental program	573
.3.4 Extrinsic signals coordinate cell division, cell growth,	272
and cell death in the developing <i>Drosophila</i> wing	574
Box 13A The core Hippo signaling pathways in <i>Drosophila</i>	
ind mammals	575
13.5 Cancer can result from mutations in genes that control	
ell proliferation	576
13.6 Size-control mechanisms differ in different organs	578
13.7 Overall body size depends on the extent and the duration	500
of growth	580

13.8 Hormones and growth factors coordinate the growth of different tissues and organs and contribute to determining overall body size	581
 Box 13B The major determinant of body size in dogs is the growth hormone-IGF-1 axis 	582
13.9 Elongation of the long bones illustrates how growth	
can be determined by a combination of an intrinsic growth program and extracellular factors	583
Box 13C Digit length ratio is determined in the embryo	586
13.10 The amount of nourishment an embryo receives can have profound effects in later life	587
Summary	588
Molting and metamorphosis	588
13.11 Arthropods have to molt in order to grow	589
13.12 Insect body size is determined by the rate and	505
duration of larval growth	589
13.13 Metamorphosis in amphibians is under hormonal control	592
Summary	593
Regeneration	594
13.14 There are two types of regeneration—morphallaxis	
and epimorphosis	595
13.15 Regeneration of amphibian and insect limbs involves epimorphosis	595
Box 13D Regeneration in <i>Hydra</i>	596
13.16 Amphibian limb regeneration involves cell dedifferentiation and new growth	597
Box 13E Planarian regeneration	598
13.17 Limb regeneration in amphibians is dependent on the	
presence of nerves	602
13.18 The limb blastema gives rise to structures with	
positional values distal to the site of amputation	603
13.19 Retinoic acid can change proximo-distal positional	
values in regenerating limbs	605
13.20 Mammals can regenerate the tips of the digits	607
13.21 Insect limbs intercalate positional values by both	607
proximo-distal and circumferential growth	607
13.22 Heart regeneration in zebrafish involves the resumption of coll division by cardiomyocytos	609
resumption of cell division by cardiomyocytes	611
Box 13F Why can't we regenerate our limbs?	
Summary	612
Aging and senescence	613
13.23 Genes can alter the timing of senescence	613
13.24 Cell senescence blocks cell multiplication	615
Summary	616
Summary to Chapter 13	616

	Chapter 14 Evolution and development	623
	Box 14A Darwin's finches	625
L	The evolution of development	626
2	14.1 Genomic evidence is throwing light on the origin	
-	of metazoans	626
	14.2 Multicellular organisms evolved from single-celled	
3	ancestors	628
5	Summary	629
	The evolutionary modification of embryonic development	629
7	•	029
3	14.3 Hox gene complexes have evolved through gene duplication	630
3	14.4 Changes in both Hox genes and their target genes	
Ð	generated the elaboration and diversification of bilaterian	
	body plans	632
9	14.5 Differences in Hox gene expression determine the	
2	variation in position and type of paired appendages in	67.4
3	arthropods	634
1	14.6 The basic body plan of arthropods and vertebrates is similar, but the dorso-ventral axis is inverted	638
_	14.7 Limbs evolved from fins	639
5	14.8 Limbs have evolved to fulfill different	039
5	specialized functions	641
5	 Box 14B How the bird wing evolved 	642
J	Box 14C Pelvic reduction in sticklebacks is based on	
7	mutations in a gene control region	644
3	14.9 Adaptive evolution within the same species	
	provides a way of studying the developmental basis for	
2	evolutionary change	645
	14.10 Evolution of different types of eyes in different	
3	animal groups is an example of parallel evolution using an ancient genetic circuitry	646
	14.11 Embryonic structures have acquired new	010
5	functions during evolution	647
7	Summary	649
-	Changes in the timing of developmental processes	649
7	14.12 Changes in growth can modify the basic body plan	649
Э	14.13 Evolution can be due to changes in the timing of	
L	developmental events	651
2	14.14 The evolution of life histories has implications for	
- 3	development	653
	Summary	653
3	Summary to Chapter 14	654
5		
5	Glossary	659
J	Index	681

List of boxes

Generic boxes

Box 1A Basic stages of Xenopus laevis development	4
Box 2I Planar cell polarity in Drosophila	88
Box 5E The Hox genes	215
Box 6C Gene silencing by microRNAs	250
Box 7A Angiosperm embryogenesis	276
Box 7C The basic model for the patterning of the	
Arabidopsis flower	298
Box 9C Convergent extension	385
Box 10A Polar bodies	417
Box 11B Positional information and morphogen	
gradients	460
Box 11E Reaction-diffusion mechanisms	472
Box 12A Specification of the sensory organs of	
adult Drosophila	537
Box 12C The development of the neural circuit	
for the knee-jerk reflex	547
Box 13B The major determinant of body size in	
dogs is the growth hormone-IGF-1 axis	582
Box 13C Digit length ratio is determined in the	
embryo	586
Box 13D Regeneration in <i>Hydra</i>	596
Box 13E Planarian regeneration	598
Box 13F Why can't we regenerate our limbs?	611
Box 14A Darwin's finches	625
Box 14B How the bird wing evolved	642
Cell Biology boxes	
Box 1B The mitotic cell cycle	7
Box 1C Germ layers	15
Box 1E Signal transduction and intracellular	
signaling pathways	26
Box 2B The Toll signaling pathway: a multifunctional	
pathway	54
Box 2C The JAK-STAT signaling pathway	57
Box 2F The Hedgehog signaling pathway	82
Box 4A Intercellular protein signals in vertebrate	
development	147
Box 4B The Wnt/ β -catenin signaling pathway	148
Box 4C Signaling by members of the TGF- β family	
of growth factors	157
Box 4E The FGF signaling pathway	165
Box 5A Fine-tuning Nodal signaling	194
Box 5B Chromatin-remodeling complexes	202
Box 5C Retinoic acid: a small-molecule intercellular	
signal	206
Box 5D The Notch signaling pathway	212

Box 6A Apoptotic pathways in nematodes,	
Drosophila and mammals	238
Box 8A Epigenetic control of gene expression	
by chromatin modification	317
Box 9A Cell-adhesion molecules and cell junctions	365
Box 9B The cytoskeleton, cell-shape change and	
cell movement	368
Box 9D Eph receptors and their ephrin ligands	395
Box 11D Sonic hedgehog signaling and the	
primary cilium	466
Box 13A The core Hippo signaling pathways	
in Drosophila and mammals	575
Experimental boxes	
Box 1D Visualizing gene expression in embryos	20
Box 2A Mutagenesis and genetic screening strategy	
for identifying developmental mutants in Drosophila	43
Box 2D P-element-mediated transformation	69
Box 2E Targeted gene expression and misexpression	
screening	70
Box 2G Mutants in denticle pattern provided clues	
to the logic of segment patterning	84
Box 2H Genetic mosaics and mitotic recombination	86
Box 3B Gene-expression profiling by DNA	
microarrays and RNA seq	128
Box 3C Large-scale mutagenesis screens for	
recessive mutations in zebrafish	134
Box 3D The Cre/ <i>loxP</i> system: a strategy for	
making gene knock-outs in mice	138
Box 4D Investigating receptor function using	
dominant-negative mutations	161
Box 6B Gene silencing by antisense RNA and	
RNA interference	241
Box 6D The gene regulatory network for sea-urchin	
endomesoderm specification	265
Box 7B Transgenic plants	281
Box 8B The derivation and culture of mouse	
embryonic stem cells (ES cells)	341
Box 8D Induced pluripotent stem cells (iPS cells)	350
Box 12B Timing the birth of cortical neurons	541
Box 14C Pelvic reduction in sticklebacks is based	
on mutations in a gene control region	644
Medical boxes	
Box 1F When development goes awry	28
Box 3A Preimplantation genetic diagnosis	126

Box 8C Tissue engineering using stem cells

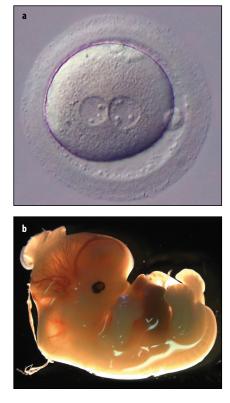
Box 9E Neural tube defects
Box 11A Teratogens and the consequences of damage
to the developing embryo

396	Box 11C Too many fingers: mutations that affect	
	antero-posterior patterning can cause polydactyly	463
458	Box 12D Autism: a developmental disorder that	
	involves synapse dysfunction	558

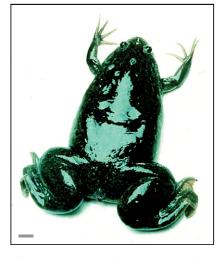
Reviewer acknowledgements

Many thanks to the following who kindly reviewed various parts of the book: Michael Akam, University of Cambridge Heather J. Anderson, Winthrop University Michael Bate, Cambridge University Jeremy Brockes, University College London Marianne Bronner, California Institute of Technology Deborah L. Chapman, University of Pittsburgh Susan Ernst, Tufts University Makoto Furutani-Seiki, University of Bath Peter Holland, University of Oxford Robert Kelsh, University of Bath Jane P. Kenney-Hunt, Westminster College Tetsu Kudoh, University of Exeter Fang Ju Lin, Coastal Carolina University

Philip Maini, University of Oxford
Bonny Millimaki, Lipscomb University
Tony Perry, University of Bath
Lisa M. Nagy, University of Arizona
Fred Sablitzky, University of Nottingham
James Sharpe, CRG Barcelona (Spain)
Rebecca Spokony, Baruch College, the City University of New York
Ajay Srivastava, Western Kentucky University
Kate Storey, University of Dundee
Vasanta Subramanian, University of Bath
Andrew Ward, University of Bath
Neil Vargesson, University of Aberdeen
Heather Verkade, Monash University
Grant Wheeler, University of East Anglia


1

History and basic concepts


 The origins of developmental biology • A conceptual tool kit

The aim of this chapter is to provide a conceptual framework for the study of development. We start with a brief history of the study of embryonic development, which illustrates how some of the key questions in developmental biology were first formulated, and continue with some of the essential principles of development. The big question is how does a single cell-the fertilized egg-give rise to a multicellular organism, in which a multiplicity of different cell types are organized into tissues and organs to make up a three-dimensional body. This question can be studied from many different viewpoints, all of which have to be fitted together to obtain a complete picture of development: which genes are expressed, and when and where; how cells communicate with each other; how a cell's developmental fate is determined; how cells proliferate and differentiate into specialized cell types; and how major changes in body shape are produced. All the information for embryonic development is contained within the fertilized eqg. We shall see that an organism's development is ultimately driven by the regulated expression of its genes, determining which proteins are present in which cells and when. In turn, proteins largely determine how a cell behaves. The genes provide a generative program for development, not a blueprint, as their actions are translated into developmental outcomes through cellular behavior such as intercellular signaling, cell proliferation, cell differentiation, and cell movement.

The development of a multicellular organism from a single cell—the fertilized egg—is a brilliant triumph of evolution. The fertilized egg divides to give rise to many millions of cells, which form structures as complex and varied as eyes, arms, heart, and brain. This amazing achievement raises a multitude of questions. How do the cells arising from division of the fertilized egg become different from each other? How do they become organized into structures such as limbs and brains? What controls the behavior of individual cells so that such highly organized patterns emerge? How are the organizing principles of development embedded within the egg, and in particular within the genetic material, DNA? Much of the excitement in developmental processes, and genetic control is one of the main themes of this book. Thousands of genes are involved in controlling development, but we will focus only on those that have key roles and illustrate general principles.

Fig. 1.1 Human fertilized egg and embryo. (a) Human fertilized egg. The sperm and egg nuclei (pronuclei) have not yet fused. (b) Human embryo at around 51 days' gestation (Carnegie stage 20), which is equivalent to a mouse embryo at 13.5 days post-fertilization. A human embryo at this stage is about 21-23 mm long. (a) Courtesy of A. Doshi, CRGH, London. (b) Reproduced courtesy of the MRC/ Wellcome-funded Human Developmental Biology Resource.

Fig. 1.2 The South African claw-toed frog, *Xenopus laevis.* Scale bar = 1 cm. *Photograph courtesy of J. Smith.*

Understanding how embryos develop is a huge intellectual challenge, and one of the ultimate aims of the science of **developmental biology** is to understand how we humans develop (Fig. 1.1). We need to understand human development for several reasons. We need to properly understand why it sometimes goes wrong and why a **fetus** may fail to be born or a baby be born with congenital abnormalities. The link here with genetic control of development is very close, as mutations in genes can lead to abnormal development; environmental factors, such as drugs and infections, can affect it too. Another area of medical research related to developmental biology is regenerative medicine—finding out how to use cells to repair damaged tissues and organs. The focus of regenerative medicine is currently on **stem cells**. Stem cells that can proliferate and give rise to all the different tissues of the body are present in embryos. These, and the stem cells with more limited developmental potential that are found in adult tissues, are discussed in Chapter 8. Cancer cells also display some properties of embryonic cells, such as the ability to divide indefinitely, and so the study of embryonic cells and their behavior could lead to new and better treatments for cancer, as many of the same genes are involved.

The development of an embryo from the fertilized egg is known as **embryogenesis**. One of the first tasks is to lay down the overall body plan of the organism, and we shall see that different organisms solve this fundamental problem in several ways. The focus of this book is mainly on animal development, in particular that of vertebrates—frogs, birds, fish, and mammals—whose early development is discussed in Chapters 3 to 5. We also look at selected invertebrates, particularly the fruit fly and the nematode worm, and also the sea urchin. Our understanding of the genetic control of development is most advanced in fruit flies and nematodes and the main features of their early development are considered in Chapters 2 and 6, respectively. The fruit fly is also used throughout the book to illustrate particular aspects of development. In Chapter 7 we look briefly at some aspects of plant development, which differs in many respects from that of animals but involves similar basic principles.

Morphogenesis, or the development of form, is discussed in Chapter 9. In Chapter 10 we look at how sex is determined and how germ cells develop. The differentiation of unspecialized cells into cells that carry out particular functions, such as muscle cells and blood cells, is considered in Chapter 8. Structures such as the vertebrate limb, and organs such as insect and vertebrate eyes, the heart and the nervous system, illustrate the problems of multicellular organization and tissue differentiation in embryogenesis, and we consider some of these systems in detail in Chapters 11 and 12. The study of developmental biology, however, goes well beyond the development of the embryo. Post-embryonic growth and aging, how some animals undergo metamorphosis, and how animals can regenerate lost organs is discussed in Chapter 13. Taking a longer view, we shall consider in Chapter 14 how developmental mechanisms have evolved and how they constrain the very process of evolution itself.

One might ask whether it is necessary to cover so many different organisms in order to understand the basic features of development. The answer is yes. Developmental biologists do indeed believe that there are general principles of development that apply to all animals, but life is too wonderfully diverse to find all the answers in a single organism. As it is, developmental biologists have tended to focus their efforts on a relatively small number of animals, chosen because they were convenient to study and amenable to experimental manipulation or genetic analysis. This is why some creatures, such as the frog *Xenopus laevis* (Fig. 1.2) and the fruit fly *Drosophila melanogaster*, have such a dominant place in developmental biology. Similarly, work with the thale-cress, *Arabidopsis thaliana*, has uncovered many features of plant development.

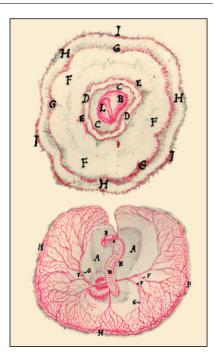
One of the most exciting and satisfying aspects of developmental biology is that understanding a developmental process in one organism can help to illuminate similar processes elsewhere—for example, giving insights into how humans develop. Nothing illustrates this more dramatically than the influence that our understanding of *Drosophila* development, and especially of its genetic basis, has had throughout developmental biology. The identification of genes controlling early embryogenesis in *Drosophila* has led to the discovery of related genes being used in similar ways in the development of mammals and other vertebrates. Such discoveries encourage us to believe in the existence of general developmental principles.

Amphibians have long been favorite organisms for studying early development because their eggs are large and their embryos are easy to grow in a simple culture medium and relatively easy to experiment on. Embryogenesis in the South African frog *Xenopus* (Box 1A) illustrates some of the basic stages of development in all animals.

In the rest of this chapter we first look briefly at the history of **embryology**—as the study of developmental biology used to be called. The term developmental biology itself is of much more recent origin and reflects the appreciation that development is not restricted to the embryo alone. Traditionally, embryology described experimental results in terms of morphology and cell fate, but we now understand development in terms of molecular genetics and cell biology as well. In the second part of the chapter we will introduce some key concepts that are used over and over again in studying and understanding development.

The origins of developmental biology

Many questions in embryology were first posed hundreds, and in some cases thousands, of years ago. Appreciating the history of these ideas helps us to understand why we approach developmental problems in the way that we do today.


1.1 Aristotle first defined the problem of epigenesis versus preformation

A scientific approach to explaining development started with Hippocrates in Greece in the fifth-century BC. Using the ideas current at the time, he tried to explain development in terms of the principles of heat, wetness, and solidification. About a century later the study of embryology advanced when the Greek philosopher Aristotle formulated a question that was to dominate much thinking about development until the end of the nineteenth century. Aristotle addressed the problem of how the different parts of the embryo was preformed from the very beginning and simply got bigger during development; the other was that new structures arose progressively, a process he termed epigenesis (which means 'upon formation') and that he likened metaphorically to the 'knitting of a net'. Aristotle favored epigenesis and his conjecture was correct.

Aristotle's influence on European thought was enormous and his ideas remained dominant well into the seventeenth century. The contrary view to epigenesis, namely that the embryo was preformed from the beginning, was championed anew in the late seventeenth century. Many could not believe that physical or chemical forces could mold a living entity like the embryo. Along with the contemporaneous background of belief in the divine creation of the world and all living things, was the belief that all embryos had existed from the beginning of the world, and that the first embryo of a species must contain all future embryos.

Even the brilliant seventeenth-century Italian embryologist, Marcello Malpighi, could not free himself from preformationist ideas. While he provided a remarkably accurate description of the development of the chick embryo, he remained convinced, against the evidence of his own observations, that the fully formed embryo was present from the beginning (Fig. 1.3). He argued that at very early stages the parts were so small that they could not be seen, even with his best microscope. Other preformationists believed that the sperm contained the embryo, and some even claimed to see a tiny human—a homunculus—in the head of each human sperm (Fig. 1.4).

The preformation/epigenesis issue was vigorously debated throughout the eighteenth century. But the problem could not be resolved until one of the great advances in biology had taken place—the recognition that living things, including embryos, were composed of cells.

Fig. 1.3 Malpighi's description of the chick embryo. The figure shows Malpighi's drawings, made in 1673, depicting the early embryo (top), and at 2 days' incubation (bottom). His drawings accurately illustrate the shape and blood supply of the embryo. *Copyright The Royal Society.*

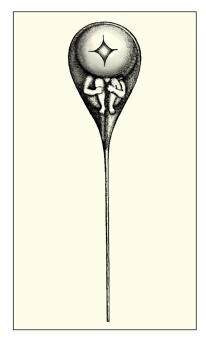
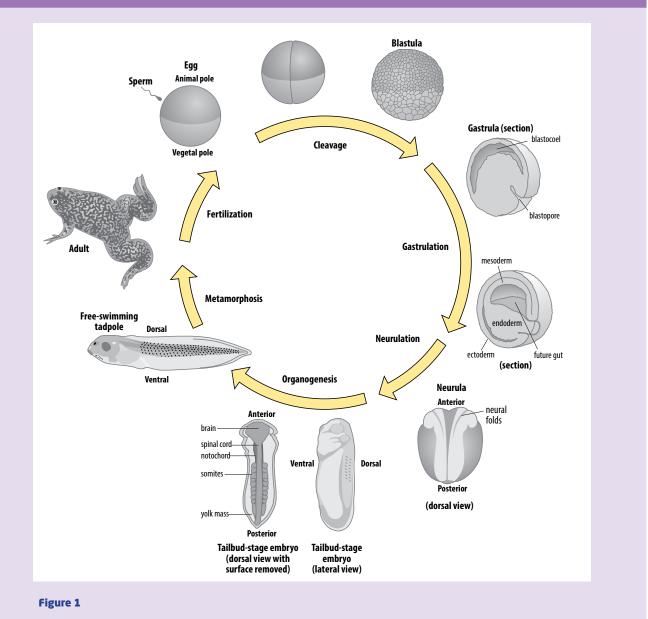



Fig. 1.4 Some preformationists believed that an homunculus was curled up in the head of each sperm.

An imaginative drawing, after N. Harspeler (1694).

1.2 Cell theory changed how people thought about embryonic development and heredity

The invention of the microscope around 1600 was essential for the discovery of cells, but the 'cell theory' of life was only developed between 1820 and 1880 by, among others, the German botanist, Matthias Schleiden, and the physiologist, Theodor Schwann. It recognized that all living organisms consist of cells, that these are the basic units of life, and that new cells can only be formed by the division of pre-existing cells. The cell theory was one of the most illuminating advances in biology, and had an enormous impact. Multicellular organisms, such as animals and plants, could now be viewed as communities of cells. Development could not therefore be based on preformation, but must be epigenetic, because during development many new cells are generated by division from the egg, and Although vertebrate development is very varied, there are a number of basic stages that can be illustrated by following the development of the frog *Xenopus laevis* (Figure 1). The unfertilized egg is a large cell. It has a pigmented upper surface (the **animal pole**) and a lower region (the **vegetal pole**) characterized by an accumulation of yolk granules.

After fertilization of the egg by a sperm, and the fusion of male and female pronuclei, cleavage begins. Cleavages are mitotic divisions in which cells do not grow between each division, and so with successive cleavages the cells become smaller. After about 12 division cycles, the embryo, now known as a blastula, consists of many small cells surrounding a fluid-filled cavity (the blastocoel) above the larger yolky cells. Already, changes have occurred within the cells and they have interacted with each other so that the three germ layers: mesoderm, endoderm, and ectoderm are specified (see Box 1C). The animal region gives rise to ectoderm, which forms both the epidermis of the skin and the nervous system. The vegetal region gives rise to the future endoderm and mesoderm, which are destined to form internal organs. At this stage, these cells are still on the surface of the embryo. During the next stagegastrulation—there is a dramatic rearrangement of cells; the endoderm and mesoderm move inside, and the basic body plan of the tadpole is established. Internally, the mesoderm gives rise to a rodlike structure (the notochord), which runs from the head to the tail, and lies centrally beneath the future nervous system. On either side of the notochord are segmented blocks of mesoderm called somites, which will give rise to the muscles and vertebral column, as well as the dermis of the skin (somites can be seen in the cutaway view of the later tailbud-stage embryo).

Shortly after gastrulation, the ectoderm above the notochord folds to form a tube (the **neural tube**), which gives rise to the brain and spinal cord—a process known as **neurulation**. By this time, other organs, such as limbs, eyes, and gills, are specified at their future locations, but only develop a little later, during **organogenesis**. During organogenesis, specialized cells such as muscle, cartilage, and neurons differentiate. By 4 days after fertilization, the embryo has become a free-swimming tadpole with typical vertebrate features.

new types of cells are formed. A crucial step forward in understanding development was the recognition, in the 1840s, that the egg itself is but a single, albeit specialized, cell.

An important advance in embryology was the proposal by the nineteenth-century German biologist, August Weismann, that an offspring does not inherit its characteristics from the body (the soma) of the parent but only from the **germ cells**—egg and sperm. Weismann drew a fundamental distinction between germ cells and the body cells or **somatic cells** (Fig. 1.5). Characteristics acquired by the body during an animal's life cannot be transmitted to the germline. As far as heredity is concerned, the body is merely a carrier of germ cells. As the English novelist and essayist Samuel Butler put it: 'A hen is only an egg's way of making another egg.'

Work on sea-urchin eggs showed that after fertilization the egg contains two nuclei, which eventually fuse; one of these nuclei belongs to the egg, while the other comes from the sperm. Fertilization therefore results in a single cell—the **zygote**— carrying a nucleus with contributions from both parents, and it was concluded that the cell nucleus must contain the physical basis of heredity. The climax of this line of research was the demonstration, towards the end of the nineteenth century, that the

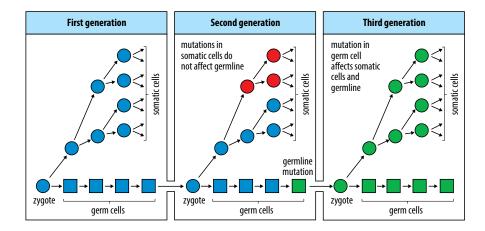
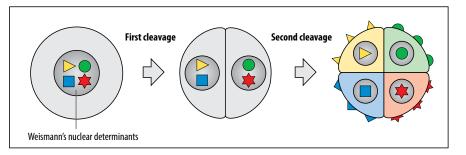
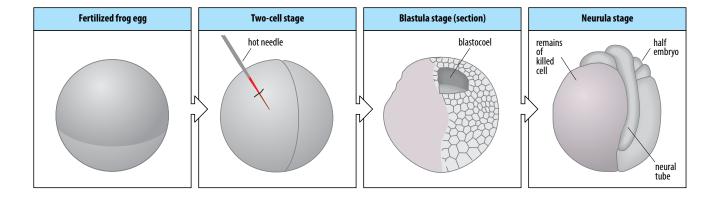



Fig. 1.5 The distinction between germ cells and somatic cells. In each generation a germ cell contributes to the zygote, which gives rise to both somatic cells and germ cells, but inheritance is through the germ cells only (first panel). Changes that occur due to a mutation (red) in a somatic cell can be passed on to its daughter cells but do not affect the germline, as shown in the second panel. In contrast, a mutation in the germline (green) in the second generation will be present in every cell in the body of the new organism to which that cell contributes, and will also be passed on to the third and future generations through the germline, as shown in the third panel.

Fig. 1.6 Weismann's theory of nuclear

determination. Weismann assumed that there were factors in the nucleus that were distributed asymmetrically to daughter cells during cleavage and directed their future development.



chromosomes within the nucleus of the zygote are derived in equal numbers from the two parental nuclei, and the recognition that this provided a physical basis for the transmission of genetic characters according to the laws developed by the Austrian botanist and monk, Gregor Mendel. The number of chromosomes is kept constant from generation to generation by a specialized type of cell division that produces the germ cells, called **meiosis**, which halves the chromosome number; the full complement of chromosomes is then restored at fertilization. The zygote and the somatic cells that arise from it divide by the process of **mitosis**, which maintains chromosome number (Box 1B). Germ cells contain a single copy of each chromosome and are called **haploid**, whereas germ-cell precursor cells and the other somatic cells of the body contain two copies and are called **diploid**.

1.3 Two main types of development were originally proposed

The next big question was how cells became different from one another during embryonic development. With the increasing emphasis on the role of the nucleus, in the 1880s Weismann put forward a model of development in which the nucleus of the zygote contained a number of special factors, or **determinants** (Fig. 1.6). He proposed that while the fertilized egg underwent the rapid cycles of cell division known as **cleavage** (see Box 1A), these nuclear determinants would be distributed unequally to the daughter cells and so would control the cells' future development. The fate of each cell was therefore predetermined in the egg by the factors it would receive during cleavage. This type of model was termed 'mosaic,' as the egg could be considered to be a mosaic of discrete localized determinants. Central to Weismann's theory was the assumption that early cell divisions must make the daughter cells quite different from each other as a result of unequal distribution of nuclear components.

In the late 1880s, initial support for Weismann's ideas came from experiments carried out independently by the German embryologist, Wilhelm Roux, who experimented with frog embryos. Having allowed the first cleavage of a fertilized frog egg, Roux destroyed one of the two cells with a hot needle and found that the remaining cell developed into a well-formed half-larva (Fig. 1.7). He concluded that the

Fig. 1.7 Roux's experiment to investigate Weismann's theory of mosaic development. After the first cleavage of a frog embryo, one of the two cells is killed by pricking it with a hot needle; the other remains undamaged. At the blastula stage the undamaged cell can be seen to have divided as normal into many cells that fill half of the embryo. The development of the blastocoel, a small fluid-filled space in the center of the blastula, is also restricted to the undamaged half. In the damaged half of the embryo, no cells appear to have formed. At the neurula stage, the undamaged cell has developed into something resembling half a normal embryo.

CELL BIOLOGY BOX 1B The mitotic cell cycle

When a eukaryotic cell duplicates itself it goes through a fixed sequence of events called the **cell cycle**. The cell grows in size, the DNA is replicated, and the replicated chromosomes then undergo mitosis and become segregated into two daughter nuclei. Only then can the cell divide to form two daughter cells, which can go through the whole sequence again.

The standard eukaryotic mitotic cell cycle is divided into wellmarked phases (Figure 1). At the M phase, mitosis and cell cleavage give rise to two new cells. The rest of the cell cycle, between one M phase and the next, is called interphase. Replication of DNA occurs during a defined period in interphase, the S phase (the S stands for synthesis of DNA). Preceding S phase is a period known as G₁ (the G stands for gap), and after it another interval known as G₂, after which the cells enter mitosis (see figure). G₁, S phase, and G₂ collectively make up interphase, the part of the cell cycle during which cells synthesize proteins and grow, as well as replicating their DNA. When somatic cells are not proliferating they are usually in a state known as G_{n} , into which they withdraw after mitosis. The decision to enter G_0 or to proceed through G_1 , may be controlled by both intracellular state and extracellular signals such as growth factors. Growth factors enable the cell to proceed out of G_o and progress through the cell cycle. Cells such as neurons and skeletal muscle cells, which do not divide after differentiation, are permanently in G_o.

Particular phases of the cell cycle are absent in some cells: during cleavage of the fertilized *Xenopus* egg G_1 and G_2 are virtually absent, and cells get smaller at each division. In *Drosophila* salivary glands there is no M phase, as the DNA replicates repeatedly without mitosis or cell division, leading to the formation of giant **polytene chromosomes**.

'development of the frog is based on a mosaic mechanism, the cells having their character and fate determined at each cleavage.'

But when Roux's fellow countryman, Hans Driesch, repeated the experiment on seaurchin eggs, he obtained quite a different result (Fig. 1.8). He wrote later: 'But things turned out as they were bound to do and not as I expected; there was, typically, a

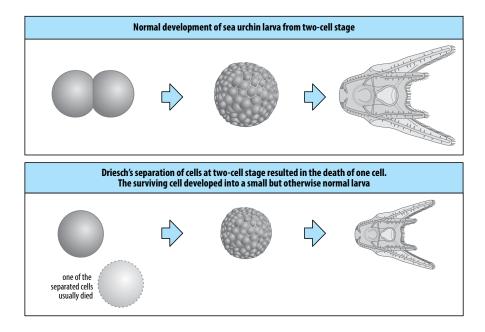


Fig. 1.8 The outcome of Driesch's experiment on sea urchin embryos, which first demonstrated the phenomenon of regulation. After separation of cells at the two-cell stage, the remaining cell developed into a small, but whole, normal larva. This is the opposite of Roux's earlier finding that when one of the cells of a two-cell frog embryo is damaged, the remaining cell develops into a half-embryo only (see Fig. 1.7).

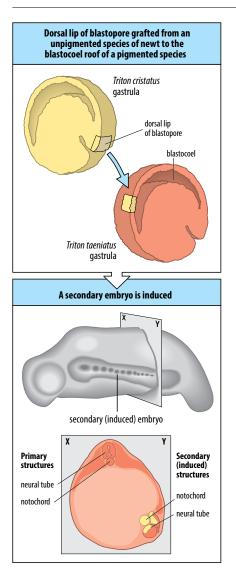


Fig. 1.9 The dramatic demonstration by Spemann and Mangold of induction of a new main body axis by the organizer region in the early amphibian gastrula. A piece of tissue (yellow) from the dorsal lip of the blastopore of a newt (Triton cristatus) gastrula is grafted to the opposite side of a gastrula of another, pigmented, newt species (Triton taeniatus, pink). The grafted tissue induces a new body axis containing neural tube and somites. The unpigmented graft tissue forms a notochord at its new site (see section in lower panel) but most of the neural tube and the other structures of the new axis have been induced from the pigmented host tissue. The organizer region discovered by Spemann and Mangold is known as the Spemann organizer.

whole gastrula on my dish the next morning, differing only by its small size from a normal one; and this small but whole gastrula developed into a whole and typical larva.'

Driesch had completely separated the cells at the two-cell stage and obtained a normal but small larva. That was just the opposite of Roux's result, and was the first clear demonstration of the developmental process known as regulation. The experiment of Roux on frogs was later repeated by the American T. H. Morgan, who separated the two blastomeres instead of killing one of them and leaving it attached, and he obtained the same result as Driesch with sea urchins. This showed the general ability of vertebrate embryos to regulate, that is, to restore normal development, even if some portions are removed or rearranged very early in development. The basis for this phenomenon is explained later in the chapter. The extent to which embryos can regulate differs in different species and we shall see many examples of regulation throughout the book. The existence of regulation does not mean, however, that the unequal distribution of determinants that make two daughter cells different from each other is not important during development. But Weismann was wrong in one crucial respect, in that such determinants are not nuclear but are located in the cell cytoplasm. We shall see many examples of developmentally important proteins and RNAs that act in this way as **cytoplasmic determinants**.

1.4 The discovery of induction showed that one group of cells could determine the development of neighboring cells

The fact that embryos can regulate implies that cells must communicate and interact with each other, but the central importance of **cell–cell interactions** in embryonic development was not really established until the discovery of the phenomenon of **induction**. This is where one cell, or tissue, directs the development of another, neighboring, cell or tissue.

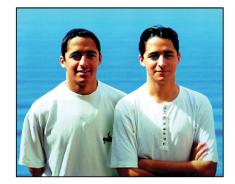
The importance of induction and other cell-cell interactions in development was proved dramatically in 1924 when Hans Spemann and his assistant, Hilde Mangold, carried out a now famous transplantation experiment in amphibian embryos. They showed that a partial second embryo could be induced by grafting one small region of an early newt embryo onto another at the same stage (Fig. 1.9). The grafted tissue was taken from the **dorsal** lip of the **blastopore**—the slit-like invagination that forms where gastrulation begins on the dorsal surface of the amphibian embryo (see Box 1A). This small region they called the **organizer**, as it seemed to be ultimately responsible for controlling the organizer, or just the **Spemann organizer**. For their discovery, Spemann received the Nobel Prize for Physiology or Medicine in 1935, the first Nobel Prize ever given for embryological research. Sadly, Hilde Mangold had died earlier, in an accident, and so could not be honored.

1.5 Developmental biology emerged from the coming together of genetics and embryology

When Mendel's laws were rediscovered in 1900 there was a great surge of interest in mechanisms of inheritance, particularly in relation to evolution, but less so in relation to embryology. Genetics was seen as the study of the transmission of hereditary elements from generation to generation, whereas embryology was the study of how an individual organism develops and, in particular, how cells in the early embryo became different from each other. Genetics seemed, in this respect, to be irrelevant to development.

The fledgling science of genetics was put on a firm conceptual and experimental footing in the first quarter of the twentieth century by T. H. Morgan. Morgan chose the fruit fly *Drosophila melanogaster* as his experimental organism. He noticed a fly with white eyes rather than the usual red eyes, and by careful cross-breeding he showed that inheritance of this mutant trait was linked to the sex of the fly. He found three other sex-linked traits and worked out that they were each determined by three

distinct 'genetic loci,' which occupied different positions on the same chromosome, the fly's X chromosome. The rather abstract hereditary 'factors' of Mendel had been given reality. But even though Morgan was originally an embryologist, he made little headway in explaining development in terms of genetics. That had to wait until the nature of the gene was better understood.


An important concept in understanding how genes influence physical and physiological traits is the distinction between **genotype** and **phenotype**. This was first put forward by the Danish botanist, Wilhelm Johannsen, in 1909. The genetic endowment of an organism—the genetic information it inherits from its parents—is the genotype. The organism's visible appearance, internal structure, and biochemistry comprise the phenotype. While the genotype certainly controls development, environmental factors interacting with the genotype influence the phenotype. Despite having identical genotypes, identical twins can develop considerable differences in their phenotypes as they grow up (Fig. 1.10), and these tend to become more evident with age.

Following Morgan's discoveries in genetics, the problem of development could now be posed in terms of the relationship between genotype and phenotype: how the genetic endowment becomes 'translated' or 'expressed' during development to give rise to a functioning organism. But the coming together of genetics and embryology was slow and tortuous. The discovery in the 1940s that genes are made of DNA and encode proteins was a major turning point. It was already clear that the properties of a cell are determined by the proteins it contains, and so the fundamental role of genes in development could at last be appreciated. By controlling which proteins were made in a cell, genes could control the changes in cell properties and behavior that occurred during development. A further major advance in the 1960s was the discovery that some genes encode proteins that control the activity of other genes.

1.6 Development is studied mainly through selected model organisms

Although the embryology of many different species has been studied at one time or another, a relatively small number of organisms provide most of our knowledge about developmental mechanisms. We can thus regard them as 'models' for understanding the processes involved, and they are often called model organisms. Sea urchins and amphibians were the main animals used for the first experimental investigations because their developing embryos are easy to obtain and, in the case of amphibians, relatively easy to manipulate experimentally, even at quite late stages. Among vertebrates, the frog Xenopus laevis, the mouse (Mus musculus), the chicken (Gallus gallus), and the zebrafish (Danio rerio), are the main model organisms now studied. Among invertebrates, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans have been the focus of most attention, because a great deal is known about their developmental genetics and they can be easily genetically modified. Two Nobel prizes have been awarded for discoveries about development in Drosophila and Caenorhabditis, respectively. With the advent of modern methods of genetic analysis, there has also been a resurgence of interest in the sea urchin Strongylocentrotus purpuratus. For plant developmental biology, Arabidopsis thaliana serves as the main model organism. The life cycles and background details for these model organisms are given in the relevant chapters later in the book. The evolutionary relationships of these organisms are shown in Fig. 1.11.

The reasons for these choices are partly historical—once a certain amount of research has been done on one animal it is more efficient to continue to study it rather than start at the beginning again with another species—and partly a question of ease of study and biological interest. Each species has its advantages and disadvantages as a developmental model. The chick embryo, for example, has long been studied as a model for vertebrate development because fertile eggs are easily available and the embryo withstands experimental microsurgical manipulation very well. A disadvantage, however, was that until very recently little was known about the chick's

Fig. 1.10 The difference between genotype and phenotype. These identical twins have the same genotype because one fertilized egg split into two during development. Their slight difference in appearance is due to nongenetic factors, such as environmental influences. *Photograph courtesy of Josè and Jaime Pascual.*

Scan here

Scan this QR code image with your mobile device to see the online supplementary material on Ascidians or log on to http://global.oup.com/uk/orc/biosciences/ devbiol/wolpert5e/qr/qr1a/