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As we pointed out in the preface to the fourth edition of Principles of Development, 
developmental biology is at the core of all of the biology of multicellular organisms. 
It deals with the process by which the genes in the fertilized egg control cell behavior 
in the embryo and so determine the character of the animal or plant. Developmental 
biology is also fundamental to evolution, as organisms that are better adapted to the 
environment result from changes in development. The four years since the last edition 
of this book have seen continuing progress in understanding the cellular and molecu-
lar basis of embryonic development, and genomics is having an increasing impact. In 
this fifth edition, we have included many recent advances. Of particular note is the 
progress in our understanding of cell differentiation (Chapter 8) and in deciphering 
the developmental changes that underlie evolution (Chapter 14). Throughout this 
new edition, we have also tried to reflect the increasing emphasis on the medical 
applications of developmental biology, for example in clinical genetics and in regen-
erative medicine (Chapter 8).

Principles of Development is designed for undergraduates and aims to provide stu-
dents with an understanding of the principles that guide development. We have tried 
to make these principles as clear as possible and to provide numerous summaries, in 
both words and pictures. We focus on the systems that best illustrate the principles of 
development, and do not aim to provide a comprehensive text. We have also tried to 
avoid going into too much detail, as this can be overwhelming and obscure general 
principles. The details can be found in the many reviews in the literature, which are 
periodically updated. It is our belief that while the details are likely to change, the 
principles will remain, and as we understand the general principles better, we should 
be able to make the book shorter!

We have assumed that students have some familiarity with basic cell and molecu-
lar biology and genetics, but all key concepts, such as the control of gene activity, 
are explained in the text. There is also an extensive glossary, which means that the 
book is self-contained. The illustrations are a special feature and have been carefully 
designed and chosen to illuminate both experiments and mechanisms. Many new 
diagrams and photographs are included throughout the book, together with informa-
tion about their sources. In providing further reading, our prime concern has been to 
guide the student to particularly helpful papers and reviews rather than to give credit 
to all the scientists who have made major contributions: to those whom we have 
neglected, we apologize. As in previous editions, we have concentrated our attention 
on vertebrates and Drosophila, but include other organisms, such as the nematode 
and the sea urchin, when they best illustrate a concept. As in the previous edition, 
we have started the book by considering the process of pattern formation in laying 
down the body plan in Drosophila (Chapter 2). This is because of the central role that 
Drosophila has played, and still plays, in understanding developmental mechanisms.

Chapter 3 describes the embryology and genetics of our vertebrate model organ-
isms, together with some of the main methods used to study them. An outline of 
human embryonic development is included in this edition, because comparing this, 
where possible, with embryonic development in other vertebrates will be important 
for medical applications. The mechanisms involved in pattern formation in the early 
development of our vertebrate model organisms are then considered in the two subse-
quent chapters (Chapters 4 and 5). These have been reorganized so that the process of 
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laying down the early body plan is first described in its entirety in Xenopus (Chapter 
4), the vertebrate in which the general principles were discovered. This is followed 
by comparisons with the process in zebrafish (Chapter 4) and in chick and mouse 
(Chapter 5). Chapter 5 also considers how the body plan is completed, which mainly 
rests on studies in chick and mouse embryos. Chapter 6 now focuses on pattern 
formation in two invertebrate model organisms, the nematode and the sea urchin. 
Chapter 7 deals with plant development, which is often neglected in general text-
books of developmental biology, and which is important in its own right. Chapters 8 
and 9 focus on the fundamental processes of differentiation and morphogenesis and 
have been extensively revised, with particular reference to stem cells in Chapter 8. 
Chapter 10 deals with germ cells and fertilization. Organogenesis (Chapter 11) and the 
development of the nervous system (Chapter 12) are huge topics, so we have had to 
be very selective in our coverage, but have included new boxes highlighting examples 
of medical relevance. In this edition, growth and regeneration are considered together 
in the same chapter (Chapter 13), which has been reorganized, and the last chapter 
(Chapter 14) deals with development in relation to evolution.

For this new edition, Alfonso Martinez Arias has joined Cheryll Tickle and Lewis 
Wolpert as a main co-author, and Andrew Lumsden has also become an author. Each 
chapter has also been reviewed by a number of experts (see page xxii), to whom we 
give thanks. The authors made the initial revisions, which were then deciphered, 
edited, and incorporated by our editor, Eleanor Lawrence. Her involvement has been 
crucial in the preparation of this edition and her expertise and influence pervades the 
book. Eleanor's input has also been invaluable in ensuring that the information in the 
book is readily accessible to students. The new illustrations were brilliantly drawn or 
adapted by Matthew McClements, who created the illustrations for the first edition.

We are indebted to Alice Roberts and Jonathan Crowe at Oxford University Press for 
their help and patience throughout the preparation of this new edition.

L. W.

London
September 2014

C. T.

Bath
September 2014

A. M. A.

Cambridge
September 2014





About the Online 
Resource Centre

www.oxfordtextbooks.co.uk/orc/wolpert5e/

Principles of Development is accompanied by a range of online materials for adopters 
of the book and their students.

For registered adopters:

 Electronic artwork

Figures from the book are available to download, for use in lecture slides.

 Journal clubs

Journal clubs consist of discussion questions focused around primary literature arti-
cles that relate to topics featured in the book. Use these as an additional learning tool 
to help your students become more adept at assimilating knowledge from the research 
literature.

 Test bank

A test bank of questions is available for you to use when assessing your students.

For students:

 Flashcard glossary

Flashcards, which can be downloaded to mobile devices, can help you test your recall 
of key terminology.

 Multiple-choice questions

Use the extensive bank of multiple-choice questions to check your understanding of 
concepts introduced in the book, and get instant feedback on your progress.

 Answer guidance

The authors have written answer guidance to the long-answer questions found at the 
end of each chapter, so you can check that you have considered all the appropriate 
points when responding to each question.
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 Web links and web activities

Links to websites, with notes to explain how each site relates to concepts featured in 
the book, are provided to help you explore topics in the book in more detail. Complete 
the associated activities to get to grips with the material in a hands-on way. In silico 
practicals have also been developed to accompany the book, and include questions to 
help you think more deeply about the material you have learned.

 Movies from real research

Scan the QR code images in the text to access movies showing key developmental 
processes occurring in real embryos to help you visualize developmental biology in 
three dimensions.

 Signaling pathway animations

Custom-made animations of key signaling pathways, linked to the text via QR code 
images, break down these complex processes into stages, making them easier to 
understand and remember.

 Online extracts

Further material on the development of ascidians can be found online, in addition 
to extra topics such as kidney organogenesis and reaction-diffusion mechanisms. QR 
code images at the relevant points in the text direct you to this extra material.
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History and basic concepts

The aim of this chapter is to provide a conceptual framework for the study of de-
velopment. We start with a brief history of the study of embryonic development, 
which illustrates how some of the key questions in developmental biology were first 
formulated, and continue with some of the essential principles of development. The 
big question is how does a single cell—the fertilized egg—give rise to a multicellular 
organism, in which a multiplicity of different cell types are organized into tissues and 
organs to make up a three-dimensional body. This question can be studied from many 
different viewpoints, all of which have to be fitted together to obtain a complete 
picture of development: which genes are expressed, and when and where; how cells 
communicate with each other; how a cell’s developmental fate is determined; how 
cells proliferate and differentiate into specialized cell types; and how major changes in 
body shape are produced. All the information for embryonic development is contained 
within the fertilized egg. We shall see that an organism’s development is ultimately 
driven by the regulated expression of its genes, determining which proteins are pres-
ent in which cells and when. In turn, proteins largely determine how a cell behaves. 
The genes provide a generative program for development, not a blueprint, as their 
actions are translated into developmental outcomes through cellular behavior such 
as intercellular signaling, cell proliferation, cell differentiation, and cell movement.

The development of a multicellular organism from a single cell—the fertilized egg—is a 
brilliant triumph of evolution. The fertilized egg divides to give rise to many millions of 
cells, which form structures as complex and varied as eyes, arms, heart, and brain. This 
amazing achievement raises a multitude of questions. How do the cells arising from divi-
sion of the fertilized egg become different from each other? How do they become organized 
into structures such as limbs and brains? What controls the behavior of individual cells so 
that such highly organized patterns emerge? How are the organizing principles of develop-
ment embedded within the egg, and in particular within the genetic material, DNA? Much 
of the excitement in developmental biology today comes from our growing understanding 
of how genes direct these developmental processes, and genetic control is one of the main 
themes of this book. Thousands of genes are involved in controlling development, but we 
will focus only on those that have key roles and illustrate general principles.

1

●● The origins of 
developmental biology

●● A conceptual tool kit



2 Chapter 1 History and basic concepts

Understanding how embryos develop is a huge intellectual challenge, and one of the 
ultimate aims of the science of developmental biology is to understand how we humans 
develop (Fig. 1.1). We need to understand human development for several reasons. We 
need to properly understand why it sometimes goes wrong and why a fetus may fail to 
be born or a baby be born with congenital abnormalities. The link here with genetic con-
trol of development is very close, as mutations in genes can lead to abnormal develop-
ment; environmental factors, such as drugs and infections, can affect it too. Another area 
of medical research related to developmental biology is regenerative medicine—finding 
out how to use cells to repair damaged tissues and organs. The focus of regenerative 
medicine is currently on stem cells. Stem cells that can proliferate and give rise to all 
the different tissues of the body are present in embryos. These, and the stem cells with 
more limited developmental potential that are found in adult tissues, are discussed in 
Chapter 8. Cancer cells also display some properties of embryonic cells, such as the abil-
ity to divide indefinitely, and so the study of embryonic cells and their behavior could 
lead to new and better treatments for cancer, as many of the same genes are involved.

The development of an embryo from the fertilized egg is known as embryogenesis. 
One of the first tasks is to lay down the overall body plan of the organism, and 
we shall see that different organisms solve this fundamental problem in several 
ways. The focus of this book is mainly on animal development, in particular that of 
 vertebrates—frogs, birds, fish, and mammals—whose early development is discussed 
in Chapters 3 to 5. We also look at selected invertebrates, particularly the fruit fly 
and the nematode worm, and also the sea urchin. Our understanding of the genetic 
control of development is most advanced in fruit flies and nematodes and the main 
features of their early development are considered in Chapters 2 and 6, respectively. 
The fruit fly is also used throughout the book to illustrate particular aspects of devel-
opment. In Chapter 7 we look briefly at some aspects of plant development, which 
differs in many respects from that of animals but involves similar basic principles.

Morphogenesis, or the development of form, is discussed in Chapter 9. In Chap-
ter 10 we look at how sex is determined and how germ cells develop. The differentia-
tion of unspecialized cells into cells that carry out particular functions, such as muscle 
cells and blood cells, is considered in Chapter 8. Structures such as the vertebrate 
limb, and organs such as insect and vertebrate eyes, the heart and the nervous sys-
tem, illustrate the problems of multicellular organization and tissue differentiation in 
embryogenesis, and we consider some of these systems in detail in Chapters 11 and 
12. The study of developmental biology, however, goes well beyond the development 
of the embryo. Post-embryonic growth and aging, how some animals undergo meta-
morphosis, and how animals can regenerate lost organs is discussed in Chapter 13. 
Taking a longer view, we shall consider in Chapter 14 how developmental mecha-
nisms have evolved and how they constrain the very process of evolution itself.

One might ask whether it is necessary to cover so many different organisms in order 
to understand the basic features of development. The answer is yes. Developmental 
biologists do indeed believe that there are general principles of development that apply 
to all animals, but life is too wonderfully diverse to find all the answers in a single 
organism. As it is, developmental biologists have tended to focus their efforts on a 
relatively small number of animals, chosen because they were convenient to study 
and amenable to experimental manipulation or genetic analysis. This is why some 
creatures, such as the frog Xenopus laevis (Fig. 1.2) and the fruit fly Drosophila melano-
gaster, have such a dominant place in developmental biology. Similarly, work with the 
thale-cress, Arabidopsis thaliana, has uncovered many features of plant development.

One of the most exciting and satisfying aspects of developmental biology is that 
understanding a developmental process in one organism can help to illuminate simi-
lar processes elsewhere—for example, giving insights into how humans develop. 
Nothing illustrates this more dramatically than the influence that our understanding 
of Drosophila development, and especially of its genetic basis, has had throughout 

a

b

Fig. 1.1 Human fertilized egg and embryo. 
(a) Human fertilized egg. The sperm and egg 
nuclei (pronuclei) have not yet fused. (b) Human 
embryo at around 51 days’ gestation (Carnegie 
stage 20), which is equivalent to a mouse 
embryo at 13.5 days post-fertilization. A human 
embryo at this stage is about 21–23 mm long. 

 (a) Courtesy of A. Doshi, CRGH, London. 
 (b) Reproduced courtesy of the MRC/
Wellcome-funded Human Developmental 
Biology Resource.

Fig. 1.2 The South African claw-toed frog, 
Xenopus laevis. Scale bar = 1 cm. 

Photograph courtesy of J. Smith.
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developmental biology. The identification of genes controlling early embryogenesis 
in Drosophila has led to the discovery of related genes being used in similar ways in 
the development of mammals and other vertebrates. Such discoveries encourage us to 
believe in the existence of general developmental principles.

Amphibians have long been favorite organisms for studying early development 
because their eggs are large and their embryos are easy to grow in a simple culture 
medium and relatively easy to experiment on. Embryogenesis in the South African frog 
Xenopus (Box 1A) illustrates some of the basic stages of development in all animals.

In the rest of this chapter we first look briefly at the history of embryology—as the 
study of developmental biology used to be called. The term developmental biology itself is 
of much more recent origin and reflects the appreciation that development is not restricted 
to the embryo alone. Traditionally, embryology described experimental results in terms 
of morphology and cell fate, but we now understand development in terms of molecular 
genetics and cell biology as well. In the second part of the chapter we will introduce some 
key concepts that are used over and over again in studying and understanding development.

The origins of developmental biology

Many questions in embryology were first posed hundreds, and in some cases thou-
sands, of years ago. Appreciating the history of these ideas helps us to understand 
why we approach developmental problems in the way that we do today.

1.1 Aristotle first defined the problem of epigenesis versus preformation

A scientific approach to explaining development started with Hippocrates in Greece in 
the fifth-century bc. Using the ideas current at the time, he tried to explain develop-
ment in terms of the principles of heat, wetness, and solidification. About a century 
later the study of embryology advanced when the Greek philosopher Aristotle formu-
lated a question that was to dominate much thinking about development until the end 
of the nineteenth century. Aristotle addressed the problem of how the different parts 
of the embryo were formed. He considered two possibilities: one was that everything 
in the embryo was preformed from the very beginning and simply got bigger dur-
ing development; the other was that new structures arose progressively, a process he 
termed epigenesis (which means ‘upon formation’) and that he likened metaphorically 
to the ‘knitting of a net’. Aristotle favored epigenesis and his conjecture was correct.

Aristotle’s influence on European thought was enormous and his ideas remained 
dominant well into the seventeenth century. The contrary view to epigenesis, namely 
that the embryo was preformed from the beginning, was championed anew in the late 
seventeenth century. Many could not believe that physical or chemical forces could 
mold a living entity like the embryo. Along with the contemporaneous background of 
belief in the divine creation of the world and all living things, was the belief that all 
embryos had existed from the beginning of the world, and that the first embryo of a 
species must contain all future embryos.

Even the brilliant seventeenth-century Italian embryologist, Marcello Malpighi, 
could not free himself from preformationist ideas. While he provided a remarkably 
accurate description of the development of the chick embryo, he remained convinced, 
against the evidence of his own observations, that the fully formed embryo was pres-
ent from the beginning (Fig. 1.3). He argued that at very early stages the parts were so 
small that they could not be seen, even with his best microscope. Other preformation-
ists believed that the sperm contained the embryo, and some even claimed to see a 
tiny human—a homunculus—in the head of each human sperm (Fig. 1.4).

The preformation/epigenesis issue was vigorously debated throughout the eigh-
teenth century. But the problem could not be resolved until one of the great advances 
in biology had taken place—the recognition that living things, including embryos, 
were composed of cells.

Fig. 1.3 Malpighi’s description of the 
chick embryo. The figure shows Malpighi’s 
drawings, made in 1673, depicting the early 
embryo (top), and at 2 days’ incubation 
(bottom). His drawings accurately illustrate 
the shape and blood supply of the embryo.

Copyright The Royal Society.

Fig. 1.4 Some preformationists believed 
that an homunculus was curled up in the 
head of each sperm.

An imaginative drawing, after  
N. Harspeler (1694).
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1.2 Cell theory changed how people thought about 
embryonic development and heredity

The invention of the microscope around 1600 was essential for the discovery of cells, but 
the ‘cell theory’ of life was only developed between 1820 and 1880 by, among others, the 
German botanist, Matthias Schleiden, and the physiologist, Theodor Schwann. It recog-
nized that all living organisms consist of cells, that these are the basic units of life, and 
that new cells can only be formed by the division of pre-existing cells. The cell theory was 
one of the most illuminating advances in biology, and had an enormous impact. Multi-
cellular organisms, such as animals and plants, could now be viewed as communities of 
cells. Development could not therefore be based on preformation, but must be epigenetic, 
because during development many new cells are generated by division from the egg, and 
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new types of cells are formed. A crucial step forward in understanding development was 
the recognition, in the 1840s, that the egg itself is but a single, albeit specialized, cell.

An important advance in embryology was the proposal by the nineteenth-century 
German biologist, August Weismann, that an offspring does not inherit its charac-
teristics from the body (the soma) of the parent but only from the germ cells—egg 
and sperm. Weismann drew a fundamental distinction between germ cells and the 
body cells or somatic cells (Fig. 1.5). Characteristics acquired by the body during an 
animal’s life cannot be transmitted to the germline. As far as heredity is concerned, 
the body is merely a carrier of germ cells. As the English novelist and essayist Samuel 
Butler put it: ‘A hen is only an egg’s way of making another egg.’

Work on sea-urchin eggs showed that after fertilization the egg contains two 
nuclei, which eventually fuse; one of these nuclei belongs to the egg, while the other 
comes from the sperm. Fertilization therefore results in a single cell—the zygote— 
carrying a nucleus with contributions from both parents, and it was concluded that 
the cell nucleus must contain the physical basis of heredity. The climax of this line of 
research was the demonstration, towards the end of the nineteenth century, that the 

Although vertebrate development is very varied, there are a 
number of basic stages that can be illustrated by following the 
development of the frog Xenopus laevis (Figure 1).The unfertil-
ized egg is a large cell. It has a pigmented upper surface (the 
animal pole) and a lower region (the vegetal pole) characterized 
by an accumulation of yolk granules.

After fertilization of the egg by a sperm, and the fusion of male 
and female pronuclei, cleavage begins. Cleavages are mitotic divi-
sions in which cells do not grow between each division, and so with 
successive cleavages the cells become smaller. After about 12 divi-
sion cycles, the embryo, now known as a blastula, consists of many 
small cells surrounding a fluid-filled cavity (the blastocoel) above 
the larger yolky cells. Already, changes have occurred within the 
cells and they have interacted with each other so that the three 
germ layers: mesoderm, endoderm, and ectoderm are speci-
fied (see Box 1C). The animal region gives rise to ectoderm, which 
forms both the epidermis of the skin and the nervous system. The 
vegetal region gives rise to the future endoderm and mesoderm, 
which are destined to form internal organs. At this stage, these 

cells are still on the surface of the embryo. During the next stage—
gastrulation—there is a dramatic rearrangement of cells; the endo-
derm and mesoderm move inside, and the basic body plan of the 
tadpole is established. Internally, the mesoderm gives rise to a rod-
like structure (the notochord), which runs from the head to the tail, 
and lies centrally beneath the future nervous system. On either 
side of the notochord are segmented blocks of mesoderm called 
somites, which will give rise to the muscles and vertebral column, 
as well as the dermis of the skin (somites can be seen in the cut-
away view of the later tailbud-stage embryo).

Shortly after gastrulation, the ectoderm above the notochord 
folds to form a tube (the neural tube), which gives rise to the 
brain and spinal cord—a process known as neurulation. By this 
time, other organs, such as limbs, eyes, and gills, are specified 
at their future locations, but only develop a little later, during 
organogenesis. During organogenesis, specialized cells such as 
muscle, cartilage, and neurons differentiate. By 4 days after fer-
tilization, the embryo has become a free-swimming tadpole with 
typical vertebrate features.
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Fig. 1.5 The distinction between 
germ cells and somatic cells. In each 
generation a germ cell contributes to the 
zygote, which gives rise to both somatic 
cells and germ cells, but inheritance is 
through the germ cells only (first panel). 
Changes that occur due to a mutation 
(red) in a somatic cell can be passed on 
to its daughter cells but do not affect the 
germline, as shown in the second panel. 
In contrast, a mutation in the germline 
(green) in the second generation will 
be present in every cell in the body of 
the new organism to which that cell 
contributes, and will also be passed on to 
the third and future generations through 
the germline, as shown in the third panel.
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chromosomes within the nucleus of the zygote are derived in equal numbers from the 
two parental nuclei, and the recognition that this provided a physical basis for the 
transmission of genetic characters according to the laws developed by the Austrian 
botanist and monk, Gregor Mendel. The number of chromosomes is kept constant 
from generation to generation by a specialized type of cell division that produces the 
germ cells, called meiosis, which halves the chromosome number; the full comple-
ment of chromosomes is then restored at fertilization. The zygote and the somatic 
cells that arise from it divide by the process of mitosis, which maintains chromosome 
number (Box 1B). Germ cells contain a single copy of each chromosome and are 
called haploid, whereas germ-cell precursor cells and the other somatic cells of the 
body contain two copies and are called diploid.

1.3 Two main types of development were originally proposed

The next big question was how cells became different from one another during 
embryonic development. With the increasing emphasis on the role of the nucleus, in 
the 1880s Weismann put forward a model of development in which the nucleus of 
the zygote contained a number of special factors, or determinants (Fig. 1.6). He pro-
posed that while the fertilized egg underwent the rapid cycles of cell division known 
as cleavage (see Box 1A), these nuclear determinants would be distributed unequally 
to the daughter cells and so would control the cells’ future development. The fate of 
each cell was therefore predetermined in the egg by the factors it would receive during 
cleavage. This type of model was termed ‘mosaic,’ as the egg could be considered to 
be a mosaic of discrete localized determinants. Central to Weismann’s theory was the 
assumption that early cell divisions must make the daughter cells quite different from 
each other as a result of unequal distribution of nuclear components.

In the late 1880s, initial support for Weismann’s ideas came from experiments 
carried out independently by the German embryologist, Wilhelm Roux, who experi-
mented with frog embryos. Having allowed the first cleavage of a fertilized frog egg, 
Roux destroyed one of the two cells with a hot needle and found that the remain-
ing cell developed into a well-formed half-larva (Fig. 1.7). He concluded that the 

Weismann’s nuclear determinants

First cleavage Second cleavage

Fig. 1.6 Weismann’s theory of nuclear 
determination. Weismann assumed that 
there were factors in the nucleus that were 
distributed asymmetrically to daughter cells 
during cleavage and directed their future 
development.

half 
embryo

neural
tube

remains 
of
killed 
cell 

Fertilized frog egg Two-cell stage Neurula stageBlastula stage (section)

hot needle blastocoel

Fig. 1.7 Roux’s experiment to investigate 
Weismann’s theory of mosaic development. 
After the first cleavage of a frog embryo, one 
of the two cells is killed by pricking it with a 
hot needle; the other remains undamaged. 
At the blastula stage the undamaged cell 
can be seen to have divided as normal into 
many cells that fill half of the embryo. The 
development of the blastocoel, a small fluid-
filled space in the center of the blastula, is 
also restricted to the undamaged half. In 
the damaged half of the embryo, no cells 
appear to have formed. At the neurula stage, 
the undamaged cell has developed into 
something resembling half a normal embryo.
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Normal development of sea urchin larva from two-cell stage

Driesch’s separation of cells at two-cell stage resulted in the death of one cell.
The surviving cell developed into a small but otherwise normal larva

one of the 
separated cells

usually died

Fig. 1.8 The outcome of Driesch’s 
experiment on sea urchin embryos, which 
first demonstrated the phenomenon of 
regulation. After separation of cells at the 
two-cell stage, the remaining cell developed 
into a small, but whole, normal larva. This 
is the opposite of Roux’s earlier finding 
that when one of the cells of a two-cell 
frog embryo is damaged, the remaining 
cell develops into a half-embryo only 
(see Fig. 1.7).

‘development of the frog is based on a mosaic mechanism, the cells having their 
character and fate determined at each cleavage.’

But when Roux’s fellow countryman, Hans Driesch, repeated the experiment on sea-
urchin eggs, he obtained quite a different result (Fig. 1.8). He wrote later: ‘But things 
turned out as they were bound to do and not as I expected; there was, typically, a 

CELL BIOLOGY BOX 1B The mitotic cell cycle

When a eukaryotic cell duplicates itself it goes through a fixed 
sequence of events called the cell cycle. The cell grows in size, 
the DNA is replicated, and the replicated chromosomes then 
undergo mitosis and become segregated into two daughter 
nuclei. Only then can the cell divide to form two daughter cells, 
which can go through the whole sequence again.

The standard eukaryotic mitotic cell cycle is divided into well-
marked phases (Figure 1). At the M phase, mitosis and cell cleav-
age give rise to two new cells. The rest of the cell cycle, between 
one M phase and the next, is called interphase. Replication of 
DNA occurs during a defined period in interphase, the S phase 
(the S stands for synthesis of DNA). Preceding S phase is a period 
known as G1 (the G stands for gap), and after it another interval 
known as G2, after which the cells enter mitosis (see figure). G1, S 
phase, and G2 collectively make up interphase, the part of the cell 
cycle during which cells synthesize proteins and grow, as well as 
replicating their DNA. When somatic cells are not proliferating 
they are usually in a state known as G0, into which they withdraw 
after mitosis. The decision to enter G0 or to proceed through G1, 
may be controlled by both intracellular state and extracellular 
signals such as growth factors. Growth factors enable the cell to 
proceed out of G0 and progress through the cell cycle. Cells such 
as neurons and skeletal muscle cells, which do not divide after 
differentiation, are permanently in G0.

Particular phases of the cell cycle are absent in some cells: dur-
ing cleavage of the fertilized Xenopus egg G1 and G2 are virtually 
absent, and cells get smaller at each division. In Drosophila sali-
vary glands there is no M phase, as the DNA replicates repeat-
edly without mitosis or cell division, leading to the formation of 
giant polytene chromosomes.
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whole gastrula on my dish the next morning, differing only by its small size from a nor-
mal one; and this small but whole gastrula developed into a whole and typical larva.’

Driesch had completely separated the cells at the two-cell stage and obtained a normal 
but small larva. That was just the opposite of Roux’s result, and was the first clear dem-
onstration of the developmental process known as regulation. The experiment of Roux 
on frogs was later repeated by the American T. H. Morgan, who separated the two blas-
tomeres instead of killing one of them and leaving it attached, and he obtained the same 
result as Driesch with sea urchins. This showed the general ability of vertebrate embryos 
to regulate, that is, to restore normal development, even if some portions are removed or 
rearranged very early in development. The basis for this phenomenon is explained later 
in the chapter. The extent to which embryos can regulate differs in different species and 
we shall see many examples of regulation throughout the book. The existence of regula-
tion does not mean, however, that the unequal distribution of determinants that make 
two daughter cells different from each other is not important during development. But 
Weismann was wrong in one crucial respect, in that such determinants are not nuclear 
but are located in the cell cytoplasm. We shall see many examples of developmentally 
important proteins and RNAs that act in this way as cytoplasmic determinants.

1.4 The discovery of induction showed that one group of cells could 
determine the development of neighboring cells

The fact that embryos can regulate implies that cells must communicate and interact with 
each other, but the central importance of cell–cell interactions in embryonic develop-
ment was not really established until the discovery of the phenomenon of induction. This 
is where one cell, or tissue, directs the development of another, neighboring, cell or tissue.

The importance of induction and other cell–cell interactions in development was 
proved dramatically in 1924 when Hans Spemann and his assistant, Hilde Mangold, 
carried out a now famous transplantation experiment in amphibian embryos. They 
showed that a partial second embryo could be induced by grafting one small region 
of an early newt embryo onto another at the same stage (Fig. 1.9). The grafted tis-
sue was taken from the dorsal lip of the blastopore—the slit-like invagination that 
forms where gastrulation begins on the dorsal surface of the amphibian embryo (see 
Box 1A). This small region they called the organizer, as it seemed to be ultimately 
responsible for controlling the organization of a complete embryonic body; it is now 
known as the Spemann–Mangold organizer, or just the Spemann organizer. For 
their discovery, Spemann received the Nobel Prize for Physiology or Medicine in 1935, 
the first Nobel Prize ever given for embryological research. Sadly, Hilde Mangold had 
died earlier, in an accident, and so could not be honored.

1.5 Developmental biology emerged from the coming together of 
genetics and embryology

When Mendel’s laws were rediscovered in 1900 there was a great surge of interest in 
mechanisms of inheritance, particularly in relation to evolution, but less so in relation to 
embryology. Genetics was seen as the study of the transmission of hereditary elements 
from generation to generation, whereas embryology was the study of how an individual 
organism develops and, in particular, how cells in the early embryo became different 
from each other. Genetics seemed, in this respect, to be irrelevant to development.

The fledgling science of genetics was put on a firm conceptual and experimental 
footing in the first quarter of the twentieth century by T. H. Morgan. Morgan chose 
the fruit fly Drosophila melanogaster as his experimental organism. He noticed a fly 
with white eyes rather than the usual red eyes, and by careful cross-breeding he 
showed that inheritance of this mutant trait was linked to the sex of the fly. He found 
three other sex-linked traits and worked out that they were each determined by three 
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Fig. 1.9 The dramatic demonstration by 
Spemann and Mangold of induction of 
a new main body axis by the organizer 
region in the early amphibian gastrula. A 
piece of tissue (yellow) from the dorsal lip 
of the blastopore of a newt (Triton cristatus) 
gastrula is grafted to the opposite side of a 
gastrula of another, pigmented, newt species 
(Triton taeniatus, pink). The grafted tissue 
induces a new body axis containing neural 
tube and somites. The unpigmented graft 
tissue forms a notochord at its new site (see 
section in lower panel) but most of the neural 
tube and the other structures of the new 
axis have been induced from the pigmented 
host tissue. The organizer region discovered 
by Spemann and Mangold is known as the 
Spemann organizer.



The origins of developmental biology 9

distinct ‘genetic loci,’ which occupied different positions on the same chromosome, 
the fly’s X chromosome. The rather abstract hereditary ‘factors’ of Mendel had been 
given reality. But even though Morgan was originally an embryologist, he made little 
headway in explaining development in terms of genetics. That had to wait until the 
nature of the gene was better understood.

An important concept in understanding how genes influence physical and physi-
ological traits is the distinction between genotype and phenotype. This was first put 
forward by the Danish botanist, Wilhelm Johannsen, in 1909. The genetic endowment 
of an organism—the genetic information it inherits from its parents—is the genotype. 
The organism’s visible appearance, internal structure, and biochemistry comprise the 
phenotype. While the genotype certainly controls development, environmental fac-
tors interacting with the genotype influence the phenotype. Despite having identical 
genotypes, identical twins can develop considerable differences in their phenotypes as 
they grow up (Fig. 1.10), and these tend to become more evident with age.

Following Morgan’s discoveries in genetics, the problem of development could now 
be posed in terms of the relationship between genotype and phenotype: how the 
genetic endowment becomes ‘translated’ or ‘expressed’ during development to give 
rise to a functioning organism. But the coming together of genetics and embryology 
was slow and tortuous. The discovery in the 1940s that genes are made of DNA and 
encode proteins was a major turning point. It was already clear that the properties of 
a cell are determined by the proteins it contains, and so the fundamental role of genes 
in development could at last be appreciated. By controlling which proteins were made 
in a cell, genes could control the changes in cell properties and behavior that occurred 
during development. A further major advance in the 1960s was the discovery that 
some genes encode proteins that control the activity of other genes.

1.6 Development is studied mainly through selected model organisms

Although the embryology of many different species has been studied at one time or 
another, a relatively small number of organisms provide most of our knowledge about 
developmental mechanisms. We can thus regard them as ‘models’ for understanding 
the processes involved, and they are often called model organisms. Sea urchins and 
amphibians were the main animals used for the first experimental investigations because 
their developing embryos are easy to obtain and, in the case of amphibians, relatively 
easy to manipulate experimentally, even at quite late stages. Among vertebrates, the frog 
Xenopus laevis, the mouse (Mus musculus), the chicken (Gallus gallus), and the zebraf-
ish (Danio rerio), are the main model organisms now studied. Among invertebrates, the 
fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans have been 
the focus of most attention, because a great deal is known about their developmen-
tal genetics and they can be easily genetically modified. Two Nobel prizes have been 
awarded for discoveries about development in Drosophila and Caenorhabditis, respec-
tively. With the advent of modern methods of genetic analysis, there has also been a 
resurgence of interest in the sea urchin Strongylocentrotus purpuratus. For plant develop-
mental biology, Arabidopsis thaliana serves as the main model organism. The life cycles 
and background details for these model organisms are given in the relevant chapters later 
in the book. The evolutionary relationships of these organisms are shown in Fig. 1.11.

The reasons for these choices are partly historical—once a certain amount of 
research has been done on one animal it is more efficient to continue to study it 
rather than start at the beginning again with another species—and partly a question 
of ease of study and biological interest. Each species has its advantages and disad-
vantages as a developmental model. The chick embryo, for example, has long been 
studied as a model for vertebrate development because fertile eggs are easily available 
and the embryo withstands experimental microsurgical manipulation very well. A 
disadvantage, however, was that until very recently little was known about the chick’s 

Fig. 1.10 The difference between 
genotype and phenotype. These identical 
twins have the same genotype because 
one fertilized egg split into two during 
development. Their slight difference in 
appearance is due to nongenetic factors, 
such as environmental influences.

Photograph courtesy of Josè and Jaime 
Pascual.
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